Subscribe

Issue No.03 - March (2012 vol.18)

pp: 407-420

Christian Rössl , Otto-von-Guericke-Universität, Magdeburg

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.78

ABSTRACT

We propose a new technique for visual exploration of streamlines in 3D vector fields. We construct a map from the space of all streamlines to points in {\hbox{\rlap{I}\kern 2.0pt{\hbox{R}}}}^n based on the preservation of the Hausdorff metric in streamline space. The image of a vector field under this map is a set of 2-manifolds in {\hbox{\rlap{I}\kern 2.0pt{\hbox{R}}}}^n with characteristic geometry and topology. Then standard clustering methods applied to the point sets in {\hbox{\rlap{I}\kern 2.0pt{\hbox{R}}}}^n yield a segmentation of the original vector field. Our approach provides a global analysis of 3D vector fields which incorporates the topological segmentation but yields additional information. In addition to a pure segmentation, the established map provides a natural "parametrization” visualized by the manifolds. We test our approach on a number of synthetic and real-world data sets.

INDEX TERMS

Vector fields, streamline embedding, clustering.

CITATION

Christian Rössl, "Streamline Embedding for 3D Vector Field Exploration",

*IEEE Transactions on Visualization & Computer Graphics*, vol.18, no. 3, pp. 407-420, March 2012, doi:10.1109/TVCG.2011.78REFERENCES

- [1] B. Heckel, G. Weber, B. Hamann, and K.I. Joy, “Construction of Vector Field Hierarchies,”
VISUALIZATION '99: Proc. IEEE 10th Visualization Conf. (VIS '99), 1999.- [2] A. Telea and J.J. van Wijk, “Simplified Representation of Vector Fields,”
VISUALIZATION '99: Proc. IEEE 10th Visualization Conf. (VIS '99). 1999.- [3] T. Preusser and M. Rumpf, “Anisotropic Nonlinear Diffusion in Flow Visualization,”
Proc. IEEE 10th Visualization Conf. (VIS '99), 1999.- [4] M. Griebel, T. Preusser, M. Rumpf, M.A. Schweitzer, and A. Telea, “Flow Field Clustering via Algebraic Multigrid,”
Proc. IEEE Visualization, pp. 35-42, 2004.- [5] J. Hunt, “Vorticity and Vortex Dynamics in Complex Turbulent Flows,”
Trans. Canadian Soc. for Mechanical Eng., vol. 11, pp. 21-35, 1987.- [6] J. Jeong and F. Hussain, “On the Identification of a Vortex,”
J. Fluid Mechanics, vol. 285, pp. 69-94, 1995.- [7] J. Helman and L. Hesselink, “Representation and Display of Vector Field Topology in Fluid Flow Data Sets,”
IEEE Computer, vol. 22, no. 8, pp. 27-36, Aug. 1989.- [8] J. Helman and L. Hesselink, “Visualizing Vector Field Topology in Fluid Flows,”
IEEE Computer Graphics and Applications, vol. 11, no. 3, pp. 36-46, May 1991.- [9] G. Scheuermann, H. Hagen, H. Krüger, M. Menzel, and A. Rockwood, “Visualization of Higher Order Singularities in Vector Fields,”
Proc. IEEE Visualization, pp. 67-74, 1997.- [10] K. Mahrous, J. Bennett, B. Hamann, and K. Joy, “Improving Topological Segmentation of Three-Dimensional Vector Fields,”
Proc. Symp. Data Visualisation Data Visualization (VISSYM '03), pp. 203-212. 2003.- [11] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel, “Saddle Connectors—An Approach to Visualizing the Topological Skeleton of Complex 3D Vector Fields,”
Proc. IEEE Visualization, pp. 225-232. 2003.- [12] F. Post, B. Vrolijk, H. Hauser, R. Laramee, and H. Doleisch, “The State of the Art in Flow Visualization: Feature Extraction and Tracking,”
Computer Graphics Forum, vol. 22, no. 4, pp. 775-792, 2003.- [13] R.S. Laramee, H. Hauser, L. Zhao, and F.H. Post, “Topology-Based Flow Visualization, the State of the Art,”
Proc. Topology-Based Methods in Visualization Workshop, pp. 1-19, 2007.- [14] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel, K. Matkovic, and H. Hauser, “On the Way towards Topology-Based Visualization of Unsteady Flow—The State of the Art,”
Proc. Eurographics 2010—State of the Art, pp. 137-154, Apr. 2010.- [15] T. Salzbrunn and G. Scheuermann, “Streamline Predicates,”
IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 6, pp. 1601-1612, Nov./Dec. 2006.- [16] J. Blaas, C.P. Botha, B. Peters, F.M. Vos, and F.H. Post, “Fast and Reproducible Fiber Bundle Selection in Dti Visualization,”
Proc. IEEE Visualization Conf., pp. 59-64, 2005.- [17] A. Sherbondy, D. Akers, R. Mackenzie, R. Dougherty, and B. Wandell, “Exploring Connectivity of the Brain's White Matter with Dynamic Queries,”
IEEE Trans. Visualization and Computer Graphics, vol. 11, no. 4, pp. 419-430, July-Aug. 2005.- [18] L. O'Donnell and C.-F. Westin, “White Matter Tract Clustering and Correspondence in Populations,”
Proc. Eighth Int'l Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI '05), pp. 140-147, 2005.- [19] W. Chen, S. Zhang, S. Correia, and D.S. Ebert, “Abstractive Representation and Exploration of Hierarchically Clustered Diffusion Tensor Fiber Tracts,”
Computer Graphics Forum, vol. 27, no. 3, pp. 1071-1078, 2008.- [20] W. Chen, Z. Ding, S. Zhang, A. MacKay-Brandt, S. Correia, H. Qu, J.A. Crow, D.F. Tate, Z. Yan, and Q. Peng, “A Novel Interface for Interactive Exploration of DTI Fibers,”
IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 6, pp. 1433-1440, Nov./Dec. 2009.- [21] B. Jobard and W. Lefer, “Creating Evenly-Spaced Streamlines of Arbitrary Density,”
Proc. Eighth Eurographics Workshop Visualization in Scientific Computing, pp. 57-66. 1997.- [22] G. Turk and D. Banks, “Image-Guided Streamline Placement,”
Proc. SIGGRAPH, pp. 453-460. 1996.- [23] V. Verma, D. Kao, and A. Pang, “A Flow-Guided Streamline Seeding Strategy,”
VIS '00: Proc. Conf. Visualization, pp. 163-170. 2000.- [24] T. Cox and M. Cox,
Multidimensional Scaling. Chapman and Hall, 2001.- [25] T. Schultz, “Feature Extraction for dw-mri Visualization: The State of the Art and Beyond,”
Proc. Schloss Dagstuhl Scientific Visualization Workshop, p. to appear, 2010.- [26] A. Brun, H.-J. Park, H. Knutsson, and C.-F. Westin, “Coloring of DT-MRI Fiber Traces Using Laplacian Eigenmaps,”
Proc. Ninth Int'l Conf. Computer Aided Systems Theory—EUROCAST, pp. 518-529, 2003.- [27] B. Moberts, A. Vilanova, and J.J. van Wijk, “Evaluation of Fiber Clustering Methods for Diffusion Tensor Imaging,”
Proc. IEEE Visualization, pp. 65-72, 2005.- [28] I. Corouge, G. Gerig, and S. Gouttard, “Towards a Shape Model of White Matter Fiber Bundles Using Diffusion Tensor Mri,”
Proc. IEEE Int'l Symp. Biomedical Imaging (ISBI), pp. 344-347, 2004.- [29] S. Zhang, S. Correia, and D.H. Laidlaw, “Identifying White-Matter Fiber Bundles in Dti Data Using an Automated Proximity-Based Fiber-Clustering Method,”
IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 5, pp. 1044-1053, Sept.-Oct. 2008.- [30] A. Brun, H. Knutsson, H.-J. Park, M.E. Shenton, and C.-F. Westin, “Clustering Fiber Traces Using Normalized Cuts,”
Medical Image Computing and Computer-Assisted Intervention-MICCAI, pp. 368-375, 2004.- [31] D.M. Mount and S. Arya, “Ann: A Library fOr Approximate Nearest Neighbor Searching,” http://www.cs.umd.edu/mountANN/, technical report, 2010.
- [32] H. Alt, M. Godau, C. Knauer, and C. Wenk, “Computing the Hausdorff Distance of Geometric Patterns and Shapes,”
Proc. Discrete and Computational Geometry—The Goodman-Pollack- Festschrift, pp. 65-76, 2003.- [33] M. Belkin and P. Niyogi, “Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering,”
Advances in Neural Information Processing Systems 14, pp. 585-591, 2001.- [34] A.Y. Ng, M.I. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis and an Algorithm,”
Advances in Neural Information Processing Systems 14, pp. 849-856, 2001.- [35] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888-905, Aug. 2000.- [36] H. Edelsbrunner and E.P. Mücke, “Three-Dimensional Alpha Shapes,”
ACM Trans. Graphics, vol. 13, no. 1, pp. 43-72, 1994.- [37] G. Haller, “An Objective Definition of a Vortex,”
J. Fluid Mechanics, vol. 525, pp. 1-26, 2005.- [38] F. Sadlo and R. Peikert, “Visualizing Lagrangian Coherent Structures and Comparison to Vector Field Topology,”
Topology-Based Methods in Visualization II, H.-C. Hege, K. Polthier, and G. Scheuermann, eds., pp. 15-30, Springer, 2008.- [39] K. Shi, H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel, “Visualizing Transport Structures of Time-Dependent Flow Fields,”
Proc. IEEE Computer Graphics and Applications, pp. 24-36, 2008.- [40] M. Neugebauer, R. Gasteiger, O. Beuing, V. Diehl, M. Skalej, and B. Preim, “Combining Map Displays and 3D Visualizations for the Analysis of Scalar Data on Cerebral Aneurysm Surfaces,”
Computer Graphics Forum (EuroVis), vol. 28, no. 3, pp. 895-902, June 2009.- [41] T. Cour, F. Bénézit, and J. Shi, “Spectral Segmentation with Multiscale Graph Decomposition,”
Proc. IEEE CS Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1124-1131. 2005. |