
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Christian Rössl, Holger Theisel, "Streamline Embedding for 3D Vector Field Exploration," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 3, pp. 407420, March, 2012.  
BibTex  x  
@article{ 10.1109/TVCG.2011.78, author = {Christian Rössl and Holger Theisel}, title = {Streamline Embedding for 3D Vector Field Exploration}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {18}, number = {3}, issn = {10772626}, year = {2012}, pages = {407420}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.78}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Streamline Embedding for 3D Vector Field Exploration IS  3 SN  10772626 SP407 EP420 EPD  407420 A1  Christian Rössl, A1  Holger Theisel, PY  2012 KW  Vector fields KW  streamline embedding KW  clustering. VL  18 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] B. Heckel, G. Weber, B. Hamann, and K.I. Joy, “Construction of Vector Field Hierarchies,” VISUALIZATION '99: Proc. IEEE 10th Visualization Conf. (VIS '99), 1999.
[2] A. Telea and J.J. van Wijk, “Simplified Representation of Vector Fields,” VISUALIZATION '99: Proc. IEEE 10th Visualization Conf. (VIS '99). 1999.
[3] T. Preusser and M. Rumpf, “Anisotropic Nonlinear Diffusion in Flow Visualization,” Proc. IEEE 10th Visualization Conf. (VIS '99), 1999.
[4] M. Griebel, T. Preusser, M. Rumpf, M.A. Schweitzer, and A. Telea, “Flow Field Clustering via Algebraic Multigrid,” Proc. IEEE Visualization, pp. 3542, 2004.
[5] J. Hunt, “Vorticity and Vortex Dynamics in Complex Turbulent Flows,” Trans. Canadian Soc. for Mechanical Eng., vol. 11, pp. 2135, 1987.
[6] J. Jeong and F. Hussain, “On the Identification of a Vortex,” J. Fluid Mechanics, vol. 285, pp. 6994, 1995.
[7] J. Helman and L. Hesselink, “Representation and Display of Vector Field Topology in Fluid Flow Data Sets,” IEEE Computer, vol. 22, no. 8, pp. 2736, Aug. 1989.
[8] J. Helman and L. Hesselink, “Visualizing Vector Field Topology in Fluid Flows,” IEEE Computer Graphics and Applications, vol. 11, no. 3, pp. 3646, May 1991.
[9] G. Scheuermann, H. Hagen, H. Krüger, M. Menzel, and A. Rockwood, “Visualization of Higher Order Singularities in Vector Fields,” Proc. IEEE Visualization, pp. 6774, 1997.
[10] K. Mahrous, J. Bennett, B. Hamann, and K. Joy, “Improving Topological Segmentation of ThreeDimensional Vector Fields,” Proc. Symp. Data Visualisation Data Visualization (VISSYM '03), pp. 203212. 2003.
[11] H. Theisel, T. Weinkauf, H.C. Hege, and H.P. Seidel, “Saddle Connectors—An Approach to Visualizing the Topological Skeleton of Complex 3D Vector Fields,” Proc. IEEE Visualization, pp. 225232. 2003.
[12] F. Post, B. Vrolijk, H. Hauser, R. Laramee, and H. Doleisch, “The State of the Art in Flow Visualization: Feature Extraction and Tracking,” Computer Graphics Forum, vol. 22, no. 4, pp. 775792, 2003.
[13] R.S. Laramee, H. Hauser, L. Zhao, and F.H. Post, “TopologyBased Flow Visualization, the State of the Art,” Proc. TopologyBased Methods in Visualization Workshop, pp. 119, 2007.
[14] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel, K. Matkovic, and H. Hauser, “On the Way towards TopologyBased Visualization of Unsteady Flow—The State of the Art,” Proc. Eurographics 2010—State of the Art, pp. 137154, Apr. 2010.
[15] T. Salzbrunn and G. Scheuermann, “Streamline Predicates,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 6, pp. 16011612, Nov./Dec. 2006.
[16] J. Blaas, C.P. Botha, B. Peters, F.M. Vos, and F.H. Post, “Fast and Reproducible Fiber Bundle Selection in Dti Visualization,” Proc. IEEE Visualization Conf., pp. 5964, 2005.
[17] A. Sherbondy, D. Akers, R. Mackenzie, R. Dougherty, and B. Wandell, “Exploring Connectivity of the Brain's White Matter with Dynamic Queries,” IEEE Trans. Visualization and Computer Graphics, vol. 11, no. 4, pp. 419430, JulyAug. 2005.
[18] L. O'Donnell and C.F. Westin, “White Matter Tract Clustering and Correspondence in Populations,” Proc. Eighth Int'l Conf. Medical Image Computing and ComputerAssisted Intervention (MICCAI '05), pp. 140147, 2005.
[19] W. Chen, S. Zhang, S. Correia, and D.S. Ebert, “Abstractive Representation and Exploration of Hierarchically Clustered Diffusion Tensor Fiber Tracts,” Computer Graphics Forum, vol. 27, no. 3, pp. 10711078, 2008.
[20] W. Chen, Z. Ding, S. Zhang, A. MacKayBrandt, S. Correia, H. Qu, J.A. Crow, D.F. Tate, Z. Yan, and Q. Peng, “A Novel Interface for Interactive Exploration of DTI Fibers,” IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 6, pp. 14331440, Nov./Dec. 2009.
[21] B. Jobard and W. Lefer, “Creating EvenlySpaced Streamlines of Arbitrary Density,” Proc. Eighth Eurographics Workshop Visualization in Scientific Computing, pp. 5766. 1997.
[22] G. Turk and D. Banks, “ImageGuided Streamline Placement,” Proc. SIGGRAPH, pp. 453460. 1996.
[23] V. Verma, D. Kao, and A. Pang, “A FlowGuided Streamline Seeding Strategy,” VIS '00: Proc. Conf. Visualization, pp. 163170. 2000.
[24] T. Cox and M. Cox, Multidimensional Scaling. Chapman and Hall, 2001.
[25] T. Schultz, “Feature Extraction for dwmri Visualization: The State of the Art and Beyond,” Proc. Schloss Dagstuhl Scientific Visualization Workshop, p. to appear, 2010.
[26] A. Brun, H.J. Park, H. Knutsson, and C.F. Westin, “Coloring of DTMRI Fiber Traces Using Laplacian Eigenmaps,” Proc. Ninth Int'l Conf. Computer Aided Systems Theory—EUROCAST, pp. 518529, 2003.
[27] B. Moberts, A. Vilanova, and J.J. van Wijk, “Evaluation of Fiber Clustering Methods for Diffusion Tensor Imaging,” Proc. IEEE Visualization, pp. 6572, 2005.
[28] I. Corouge, G. Gerig, and S. Gouttard, “Towards a Shape Model of White Matter Fiber Bundles Using Diffusion Tensor Mri,” Proc. IEEE Int'l Symp. Biomedical Imaging (ISBI), pp. 344347, 2004.
[29] S. Zhang, S. Correia, and D.H. Laidlaw, “Identifying WhiteMatter Fiber Bundles in Dti Data Using an Automated ProximityBased FiberClustering Method,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 5, pp. 10441053, Sept.Oct. 2008.
[30] A. Brun, H. Knutsson, H.J. Park, M.E. Shenton, and C.F. Westin, “Clustering Fiber Traces Using Normalized Cuts,” Medical Image Computing and ComputerAssisted InterventionMICCAI, pp. 368375, 2004.
[31] D.M. Mount and S. Arya, “Ann: A Library fOr Approximate Nearest Neighbor Searching,” http://www.cs.umd.edu/mountANN/, technical report, 2010.
[32] H. Alt, M. Godau, C. Knauer, and C. Wenk, “Computing the Hausdorff Distance of Geometric Patterns and Shapes,” Proc. Discrete and Computational Geometry—The GoodmanPollack Festschrift, pp. 6576, 2003.
[33] M. Belkin and P. Niyogi, “Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering,” Advances in Neural Information Processing Systems 14, pp. 585591, 2001.
[34] A.Y. Ng, M.I. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis and an Algorithm,” Advances in Neural Information Processing Systems 14, pp. 849856, 2001.
[35] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888905, Aug. 2000.
[36] H. Edelsbrunner and E.P. Mücke, “ThreeDimensional Alpha Shapes,” ACM Trans. Graphics, vol. 13, no. 1, pp. 4372, 1994.
[37] G. Haller, “An Objective Definition of a Vortex,” J. Fluid Mechanics, vol. 525, pp. 126, 2005.
[38] F. Sadlo and R. Peikert, “Visualizing Lagrangian Coherent Structures and Comparison to Vector Field Topology,” TopologyBased Methods in Visualization II, H.C. Hege, K. Polthier, and G. Scheuermann, eds., pp. 1530, Springer, 2008.
[39] K. Shi, H. Theisel, T. Weinkauf, H.C. Hege, and H.P. Seidel, “Visualizing Transport Structures of TimeDependent Flow Fields,” Proc. IEEE Computer Graphics and Applications, pp. 2436, 2008.
[40] M. Neugebauer, R. Gasteiger, O. Beuing, V. Diehl, M. Skalej, and B. Preim, “Combining Map Displays and 3D Visualizations for the Analysis of Scalar Data on Cerebral Aneurysm Surfaces,” Computer Graphics Forum (EuroVis), vol. 28, no. 3, pp. 895902, June 2009.
[41] T. Cour, F. Bénézit, and J. Shi, “Spectral Segmentation with Multiscale Graph Decomposition,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition (CVPR), pp. 11241131. 2005.