
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Sohail Shafii, Scott E. Dillard, Mario Hlawitschka, Bernd Hamann, "The Topological Effects of Smoothing," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 1, pp. 160172, January, 2012.  
BibTex  x  
@article{ 10.1109/TVCG.2011.74, author = {Sohail Shafii and Scott E. Dillard and Mario Hlawitschka and Bernd Hamann}, title = {The Topological Effects of Smoothing}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {18}, number = {1}, issn = {10772626}, year = {2012}, pages = {160172}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.74}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  The Topological Effects of Smoothing IS  1 SN  10772626 SP160 EP172 EPD  160172 A1  Sohail Shafii, A1  Scott E. Dillard, A1  Mario Hlawitschka, A1  Bernd Hamann, PY  2012 KW  Volume visualization KW  visualization techniques and methodologies KW  smoothing. VL  18 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] J. Milnor, Morse theory. Princeton Univ. Press, 1963.
[2] G. Reeb, “Sur Les Points Singuliers D'une Forme De Pfaff Complètement Intégrable Ou D'une Fonction Numérique,” Comptes Rendus de l'Acadèmie des Sciences de Paris, vol. 222, pp. 847849, 1946.
[3] R.L. Boyell and H. Ruston, “Hybrid Techniques for RealTime Radar Simulation,” Proc. Fall Joint Computer Conf., pp. 445458, 1963.
[4] H. Carr, J. Snoeyink, and U. Axen, “Computing Contour Trees in All Dimensions,” Computational Geometry—Theory and Applications, vol. 24, no. 2, pp. 7594, Feb. 2003.
[5] Y. Chiang, T. Lenz, X. Lu, and G. Rote, “Simple and Optimal OutputSensitive Construction of Contour Trees Using Monotone Paths,” Computational Geometry: Theory and Applications, vol. 30, no. 2, pp. 165195, 2005.
[6] V. Pascucci and K. ColeMcLaughlin, “Parallel Computation of the Topology of Level Sets,” Algorithmica, vol. 38, no. 2, pp. 249268, Oct. 2003.
[7] V. Pascucci, G. Scorzelli, P. Bremer, and A. Mascarenhas, “Robust OnLine Computation of Reeb Graphs: Simplicity and Speed,” Proc. SIGGRAPH Int'l Conf. Computer Graphics and Interactive Techniques, 2007.
[8] Y. Shinagawa, T.L. Kunii, and Y.L. Kergosien, “Surface Coding Based on Morse Theory,” IEEE Computer Graphics and Applications, vol. 11, no. 5, pp. 6678, Sept. 1991.
[9] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D.R. Schikore, “Contour Trees and Small Seed Sets for Isosurface Traversal,” Proc. 13th ACM Ann. Symp. Computational Geometry (SoCG), pp. 212220, 1997.
[10] C.L. Bajaj, V. Pascucci, and D.R. Schikore, “The Contour Spectrum,” Proc. Visualization '97, R. Yagel and H. Hagen, eds., pp. 167173, Oct. 1997.
[11] H. Carr and J. Snoeyink, “Path Seeds and Flexible Isosurfaces Using Topology for Exploratory Visualization,” Proc. Symp. Data Visualization (VisSym '03), pp. 4958, 2003.
[12] S. Takahashi, Y. Takeshima, and I. Fujishiro, “Topological Volume Skeletonization and Its Application to Transfer Function Design,” Graphical Models, vol. 66, no. 1, pp. 2449, Jan. 2004.
[13] G.H. Weber, S.E. Dillard, H. Carr, V. Pascucci, and B. Hamann, “TopologyControlled Volume Rendering,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 2, pp. 330341, Mar./Apr. 2007.
[14] P.T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, “A Topological Hierarchy for Functions on Triangulated Surfaces,” IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 4, pp. 385396, July/Aug. 2004.
[15] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann, “Efficient Computation of MorseSmale Complexes for ThreeDimensional Scalar Functions,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp. 14401447, Nov./Dec. 2007.
[16] A. Gyulassy, M. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa, A. Higginbotham, and B. Hamann, “Topologically Clean Distance Fields,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp. 14321439, Nov./Dec. 2007.
[17] D. Laney, P. Bremer, A. Macarenhas, P. Miller, and V. Pascucci, “Understanding the Structure of the Turbulent Mixing Layer in Hydrodynamic Instabilities,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp. 10531060, Sept./Oct. 2006.
[18] L. Lifshitz and S. Pizer, “A Multiresolution Hierarchical Approach to Image Segmentation Based on Intensity Extrema,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 6, pp. 529540, June 1990.
[19] L. Florack and A. Kuijper, “The Topological Structure of ScaleSpace Images,” J. Math. Imaging and Vision, vol. 12, no. 1, pp. 6579, 2000.
[20] A. Kuijper and L. Florack, “The Hierarchical Structure of Images,” IEEE Trans. Image Processing, vol. 12, no. 9, pp. 10671079, Sept. 2003.
[21] Y. Gingold and D. Zorin, “ControlledTopology Filtering,” Proc. ACM Symp. Solid and Physical Modeling, pp. 5361, 2006.
[22] A. Szymczak, “Subdomain Aware Contour Trees and Contour Evolution in TimeDependent Scalar Fields,” Proc. Int'l Conf. Shape Modeling and Applications, pp. 136144, 2005.
[23] H. Edelsbrunner, J. Harer, A. Mascarenhas, V. Pascucci, and J. Snoeyink, “TimeVarying Reeb Graphs for Continuous SpaceTime Data,” Computational Geometry: Theory and Applications, vol. 41, no. 3, pp. 149166, 2008.
[24] H. Edelsbrunner and J. Harer, “Jacobi Sets of Multiple Morse Functions,” Proc. Foundations of Computational Math., p. 37, 2004.
[25] B. Sohn and C. Bajaj, “TimeVarying Contour Topology,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 1, pp. 1425, Jan./Feb. 2006.
[26] D. Silver and X. Wang, “Tracking Scalar Features in Unstructured Datasets,” VIS '98: Proc. Conf. Visualization '98, pp. 7986, 1998.
[27] J. Chen, D. Silver, and L. Jiang, “The Feature Tree: Visualizing Feature Tracking in Distributed Amr Datasets,” Proc. IEEE Symp. Parallel and LargeData Visualization and Graphics (PVG '03), pp. 103110, 2003.
[28] I. Fujishiro, R. Otsuka, S. Takahashi, and Y. Takeshima, “TMap: A Topological Approach to Visual Exploration of TimeVarying Volume Data,” Proc. Sixth Int'l Symp. HighPerformance Computing, pp. 176190, 2009.
[29] P. Keller and M. Bertram, “Modeling and Visualization of TimeVarying Topology Transitions Guided by Hyper Reeb Graph Structures,” Proc. Ninth IASTED Int'l Conf. Computer Graphics and Imaging, pp. 1520, 2007.
[30] S. Takahashi, Y. Kokojima, and R. Ohbuchi, “Explicit Control of Topological Transitions in Morphing Shapes of 3D Meshes,” Proc. Ninth Pacific Conf. Computer Graphics and Applications, pp. 7079, 2001.
[31] T. Nieda, A. Pasko, and T.L. Kunii, “Detection and Classification of Topological Evolution for Linear Metamorphosis,” The Visual Computer: Int'l J. Computer Graphics, vol. 22, no. 5, pp. 346356, 2006.
[32] T. Lindeberg, ScaleSpace Theory in Computer Vision. Kluwer Academic, 1994.
[33] H. Carr, J. Snoeyink, and M. van de Panne, “Simplifying Flexible Isosurfaces Using Local Geometric Measures,” Proc. IEEE Visualization, pp. 497504, 2004.
[34] S. Takahashi, I. Fujishiro, and Y. Takeshima, “Interval Volume Decomposer: A Topological Approach to Volume Traversal,” Proc. Visualization and Data Analysis, pp. 103114, 2005.
[35] S. Takahashi, G.M. Nielson, Y. Takeshima, and I. Fujishiro, “Topological Volume Skeletonization Using Adaptive Tetrahedralization,” GMP '04: Proc. Geometric Modeling and Processing, pp. 227236, 2004.
[36] H. Carr, T. Möller, and J. Snoeyink, “Simplicial Subdivisions and Sampling Artifacts,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 2, pp. 231242, 2006.
[37] G.M. Nielson, “On Marching Cubes,” IEEE Trans. Visualization and Computer Graphics, vol. 9, no. 3, pp. 341351, JulySept. 2003.
[38] H. Edelsbrunner, J. Harer, A. Mascarenhas, and V. Pascucci, “TimeVarying Reeb Graphs for Continuous SpaceTime Data,” SCG '04: Proc. 20th Ann. Symp. Computational Geometry, pp. 366372, 2004.
[39] H. Carr and N. Max, “Subdivision Analysis of the Trilinear Interpolant,” IEEE Trans. Visualization and Computer Graphics, vol. 16, no. 4, pp. 533547, July/Aug. 2010.
[40] J.C. Russ, The Image Processing Handbook, fifth ed. Taylor & Francis Group, 2007.
[41] G.H. Weber and G. Scheuermann, Automating Transfer Function Design Based on Topology Analysis, 2004.
[42] I. Fujishiro, Y. Takeshima, T. Azuma, and S. Takahashi, “Volume Data Mining Using 3D Field Topology Analysis,” IEEE Computer Graphics and Applications, vol. 20, no. 5, pp. 4651, Sept./Oct. 2000.
[43] H. Rösner, S. Parida, D. Kramer, C. Volkert, and J. Weissmüller, “Reconstructing a Nanoporous Metal in Three Dimensions: An Electron Tomography Study of Dealloyed Gold Leaf,” Advanced Eng. Materials, vol. 9, no. 7, pp. 535541, 2007.