
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Harish Doraiswamy, Vijay Natarajan, "OutputSensitive Construction of Reeb Graphs," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 1, pp. 146159, January, 2012.  
BibTex  x  
@article{ 10.1109/TVCG.2011.37, author = {Harish Doraiswamy and Vijay Natarajan}, title = {OutputSensitive Construction of Reeb Graphs}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {18}, number = {1}, issn = {10772626}, year = {2012}, pages = {146159}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.37}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  OutputSensitive Construction of Reeb Graphs IS  1 SN  10772626 SP146 EP159 EPD  146159 A1  Harish Doraiswamy, A1  Vijay Natarajan, PY  2012 KW  Computational topology KW  scalar functions KW  Reeb graphs KW  level set topology KW  simplification KW  graph layout. VL  18 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] Y. Shinagawa, T.L. Kunii, and Y.L. Kergosien, “Surface Coding Based on Morse Theory,” IEEE Computer Graphics Applications, vol. 11, no. 5, pp. 6678, Sept. 1991.
[2] H.S.Y. Shinagawa, T.L. Kunii, and M. Ibusuki, “Modeling Contact of Two Complex Objects: With an Application to Characterizing Dental Articulations,” Computers and Graphics, vol. 19, no. 1, pp. 2128, 1995.
[3] S. Takahashi, Y. Shinagawa, and T.L. Kunii, “A FeatureBased Approach for Smooth Surfaces,” Proc. Fourth ACM Symp. Solid Modeling and Applications (SMA '97), pp. 97110, 1997.
[4] F. Lazarus and A. Verroust, “Level Set Diagrams of Polyhedral Objects,” Proc. Fifth ACM Symp. Solid Modeling and Applications (SMA '99), pp. 130140, 1999.
[5] M. Hilaga, Y. Shinagawa, T. Kohmura, and T.L. Kunii, “Topology Matching for Fully Automatic Similarity Estimation of 3d Shapes,” Proc. ACM SIGGRAPH, pp. 203212, 2001.
[6] I. Guskov and Z. Wood, “Topological Noise Removal,” Proc. Graphics Interface, pp. 1926, 2001.
[7] Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder, “Removing Excess Topology from Isosurfaces,” ACM Trans. Graphics, vol. 23, no. 2, pp. 190208, 2004.
[8] S. Takahashi, G.M. Nielson, Y. Takeshima, and I. Fujishiro, “Topological Volume Skeletonization Using Adaptive Tetrahedralization,” Proc. Geometric Modeling and Processing (GMP '04), p. 227, 2004.
[9] M. Mortara and G. Patané, “AffineInvariant Skeleton of 3d Shapes,” Proc. Shape Modeling Int'l (SMI '02), p. 245, 2002.
[10] F. Hétroy and D. Attali, “Topological Quadrangulations of Closed Triangulated Surfaces Using the Reeb Graph,” Graphical Models, vol. 65, nos. 13, pp. 131148, 2003.
[11] E. Zhang, K. Mischaikow, and G. Turk, “FeatureBased Surface Parameterization and Texture Mapping,” ACM Trans. Graphics, vol. 24, no. 1, pp. 127, 2005.
[12] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D.R. Schikore, “Contour Trees and Small Seed Sets for Isosurface Traversal,” Proc. Symp. Computational Geometry, pp. 212220, 1997.
[13] C.L. Bajaj, V. Pascucci, and D.R. Schikore, “The Contour Spectrum,” Proc. IEEE Conf. Visualization, pp. 167173, 1997.
[14] H. Carr, J. Snoeyink, and M. van de Panne, “Simplifying Flexible Isosurfaces Using Local Geometric Measures,” Proc. IEEE Conf. Visualization, pp. 497504, 2004.
[15] I. Fujishiro, Y. Takeshima, T. Azuma, and S. Takahashi, “Volume Data Mining Using 3d Field Topology Analysis,” IEEE Computer Graphics and Applications, vol. 20, no. 5, pp. 4651, Sept./Oct. 2000.
[16] S. Takahashi, Y. Takeshima, and I. Fujishiro, “Topological Volume Skeletonization and Its Application to Transfer Function Design,” Graphical Models, vol. 66, no. 1, pp. 2449, 2004.
[17] G.H. Weber, S.E. Dillard, H. Carr, V. Pascucci, and B. Hamann, “TopologyControlled Volume Rendering,” IEEE Trans. Visualization Computer Graphics, vol. 13, no. 2, pp. 330341, Nov./Dec. 2007.
[18] J. Zhou and M. Takatsuka, “Automatic Transfer Function Generation Using Contour Tree Controlled Residue Flow Model and Color Harmonics,” IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 6, pp. 14811488, Nov. 2009.
[19] Y. Shinagawa and T.L. Kunii, “Constructing a Reeb Graph Automatically from Cross Sections,” IEEE Computer Graphics Application, vol. 11, no. 6, pp. 4451, Nov. 1991.
[20] K. ColeMcLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, “Loops in Reeb Graphs of 2Manifolds,” Discrete Computational Geometry, vol. 32, no. 2, pp. 231244, 2004.
[21] G. Patanè, M. Spagnuolo, and B. Falcidieno, “A Minimal Contouring Approach to the Computation of the Reeb Graph,” IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 4, pp. 583595, July/Aug. 2009.
[22] H. Doraiswamy and V. Natarajan, “Efficient Algorithms for Computing Reeb Graphs,” Computational Geometry Theory Applications, vol. 42, nos. 6/7, pp. 606616, 2009.
[23] H. Carr, J. Snoeyink, and U. Axen, “Computing Contour Trees in All Dimensions,” Computer Geometry Theory Applications, vol. 24, no. 2, pp. 7594, 2003.
[24] Y.J. Chiang, T. Lenz, X. Lu, and G. Rote, “Simple and Optimal OutputSensitive Construction of Contour Trees Using Monotone Paths,” Computer Geometry Theory Applications, vol. 30, no. 2, pp. 165195, 2005.
[25] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci, “Loop Surgery for Volumetric Meshes: Reeb Graphs Reduced to Contour Trees,” IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 6, pp. 11771184, Nov./Dec. 2009.
[26] V. Pascucci, G. Scorzelli, P.T. Bremer, and A. Mascarenhas, “Robust Online Computation of Reeb Graphs: Simplicity and Speed,” ACM Trans. Graphics, vol. 26, no. 3, p. 58, 2007.
[27] T. Tung and F. Schmitt, “Augmented Reeb Graphs for ContentBased Retrieval of 3d Mesh Models,” Proc. Shape Modeling Int'l (SMI '04), pp. 157166, 2004.
[28] H. Doraiswamy and V. Natarajan, “Efficient OutputSensitive Construction of Reeb Graphs,” Proc. Int'l Symp. Algorithms and Computation, pp. 557568, 2008.
[29] P.K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang, “Extreme Elevation on a 2Manifold,” Discrete Computational Geometry, vol. 36, no. 4, pp. 553572, 2006.
[30] H. Edelsbrunner, Geometry and Topology for Mesh Generation. Cambridge Univ. Press, 2001.
[31] T.F. Banchoff, “Critical Points and Curvature for Embedded Polyhedral Surfaces,” Am. Math. Monthly, vol. 77, pp. 475485, 1970.
[32] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, “MorseSmale Complexes for Piecewise Linear 3Manifolds,” Proc. Symp. Computational Geometry, pp. 361370, 2003.
[33] Y. Matsumoto, An Introduction to Morse Theory. Am. Math. Soc., 2002.
[34] G. Reeb, “Sur Les Points Singuliers d'une Forme de Pfaff Complètement intégrable ou D'une Fonction Numérique,” Comptes Rendus de L'Académie ses Séances, Paris, vol. 222, pp. 847849, 1946.
[35] V. Pascucci and K. ColeMcLaughlin, “Efficient Computation of the Topology of Level Sets,” Proc. IEEE Conf. Visualization, pp. 187194, 2002.
[36] E.P. Mücke, “Shapes and Implementations in ThreeDimensional Geometry,” PhD dissertation, Dept. of Computer Science, Univ. of Illi nois, 1993.
[37] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological Persistence and Simplification,” Discrete Computational Geometry, vol. 28, no. 4, pp. 511533, 2002.
[38] V. Pascucci, K. ColeMcLaughlin, and G. Scorzelli, “The TOPORRERY: Computation and Presentation of MultiResolution Topology,” Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, pp. 1940, Springer, 2009.
[39] I. Fujishiro, Y. Maeda, and H. Sato, “Interval Volume: A Solid Fitting Technique for Volumetric Data Display and Analysis,” Proc. Sixth Conf. Visualization '95 (VIS '95), p. 151, 1995.
[40] B. Guo, “Interval Set: A Volume Rendering Technique Generalizing Isosurface Extraction,” Proc. Sixth Conf. Visualization '95 (VIS '95), p. 3, 1995.
[41] B.S. Sohn, “Topology Preserving Tetrahedral Decomposition of Trilinear Cell,” Proc. Seventh Int'l Conf. Computational Science, Part I (ICCS '07), pp. 350357, 2007.
[42] Volvis Repository, http:/www.volvis.org/, 2011.
[43] Tetview Softwarem, http://tetgen.berlios.detetview.html/, 2011.
[44] Aim@shape Shape Repository, http:/www.aimatshape.net/, 2011.