The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2011 vol.17)
pp: 2591-2599
Cagatay Turkay , University of Bergen
Peter Filzmoser , Vienna University of Technology
Helwig Hauser , University of Bergen
In many application fields, data analysts have to deal with datasets that contain many expressions per item. The effective analysis of such multivariate datasets is dependent on the user's ability to understand both the intrinsic dimensionality of the dataset as well as the distribution of the dependent values with respect to the dimensions. In this paper, we propose a visualization model that enables the joint interactive visual analysis of multivariate datasets with respect to their dimensions as well as with respect to the actual data values. We describe a dual setting of visualization and interaction in items space and in dimensions space. The visualization of items is linked to the visualization of dimensions with brushing and focus+context visualization. With this approach, the user is able to jointly study the structure of the dimensions space as well as the distribution of data items with respect to the dimensions. Even though the proposed visualization model is general, we demonstrate its application in the context of a DNA microarray data analysis.
Interactive visual analysis, High-dimensional data analysis.
Cagatay Turkay, Peter Filzmoser, Helwig Hauser, "Brushing Dimensions—A Dual Visual Analysis Model for High-Dimensional Data", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 12, pp. 2591-2599, Dec. 2011, doi:10.1109/TVCG.2011.178
[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic sub-space clustering of high dimensional data for data mining applications. In Proceedings of the 1998 ACM SIGMOD international conference on Management of data, pages 94–105. ACM, 1998.
[2] G. Andrienko, N. Andrienko, S. Bremm, T. Schreck, T. Von Landes-berger, P. Bak, and D. Keim, Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns. In Computer Graphics Forum, volume 29, pages 913–922. Wiley Online Library, 2010.
[3] W. Berger, H. Piringer, P. Filzmoser, and E. Gröller, Uncertainty-aware exploration of continuous parameter spaces using multivariate prediction. Computer Graphics Forum, 30 (3): 911–920, 2011.
[4] C. D. Correa, Y.-H. Chan, and K.-L. Ma, A framework for uncertainty-aware visual analytics. In Proc. IEEE Symposium on Visual Analytics Science and Technology VAST 2009, pages 51–58, 2009.
[5] H. Doleisch, M. Gasser, and H. Hauser, Interactive feature specification for focus+context visualization of complex simulation data. In Proceedings of the symposium on Data visualisation 2003, VISSYM' 03, pages 239–248. Eurographics Association, 2003.
[6] S. Dudoit, J. Fridlyand, and T. Speed, Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American statistical association, 97 (457): 77–87, 2002.
[7] A. Farcomeni, An exact approach to sparse principal component analysis. Computational Statistics, 24 (4): 583–604, 2009.
[8] P. Filzmoser, K. Hron, and C. Reimann, Principal component analysis for compositional data with outliers. Environmetrics, 20 (6): 621–632, 2009.
[9] P. Filzmoser, R. Maronna, and M. Werner, Outlier identification in high dimensions. Computational Statistics & Data Analysis, 52 (3): 1694– 1711, 2008.
[10] R. Fuchs and H. Hauser, Visualization of multi-variate scientific data. Computer Graphics Forum, 28 (6): 1670–1690, 2009.
[11] R. Fuchs, J. Waser, and M. E. Gröller, Visual human+machine learning. IEEE TVCG, 15 (6): 1327–1334, Oct. 2009.
[12] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh, J. Downing, M. Caligiuri et al. , Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286 (5439): 531, 1999.
[13] L. J. Gosink, C. Garth, J. C. Anderson, E. W. Bethel, and K. I. Joy, An application of multivariate statistical analysis for query-driven visualization. IEEE Transactions on Visualization and Computer Graphics, 17: 264–275, 2011.
[14] Z. Guo, M. O. Ward, and E. A. Rundensteiner, Model space visualization for multivariate linear trend discovery. In Proc. IEEE Symp. Visual Analytics Science and Technology VAST 2009, pages 75–82, 2009.
[15] I. Guyon and A. Elisseeff, An introduction to variable and feature selection. The Journal of Machine Learning Research, 3: 1157–1182, 2003.
[16] D. Harrison et al. Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management, 5 (1): 81–102, 1978.
[17] H. Jänicke, M. Böttinger, and G. Scheuermann, Brushing of attribute clouds for the visualization of multivariate data. — IEEE Transactions on Visualization and Computer Graphics, pages 1459–1466, 2008.
[18] D. H. Jeong, C. Ziemkiewicz, B. Fisher, W. Ribarsky, and R. Chang, ipca: An interactive system for pca-based visual analytics. Computer Graphics Forum, 28: 767–774 (8), 2009.
[19] J. Johansson, P. Ljung, and M. Cooper, Depth cues and density in temporal parallel coordinates. In EuroVis, pages 35–42, 2007.
[20] R. Johnson and D. Wichern, Applied multivariate statistical analysis, volume 6. Prentice Hall Upper Saddle River, NJ:, 2007.
[21] B. Kégl, Intrinsic dimension estimation using packing numbers. Advances in Neural Information Processing Systems, pages 697–704, 2003.
[22] J. Kehrer, P. Filzmoser, and H. Hauser, Brushing moments in interactive visual analysis. Computer Graphics Forum, 29 (3): 813–822, 2010.
[23] D. Keim, F. Mansmann, J. Schneidewind, J. Thomas, and H. Ziegler, Visual analytics: Scope and challenges. Visual Data Mining, pages 76–90, 2008.
[24] O. D. Lampe, J. Kehrer, and H. Hauser, Visual analysis of multivariate movement data using interactive difference views. In Proceedings of Vision, Modeling, and Visualization (VMV 2010), pages 315–322, 2010.
[25] A. R. Martin and M. O. Ward, High dimensional brushing for interactive exploration of multivariate data. In VIS '95: Proceedings of the 6th conference on Visualization '95, page 271, Washington, DC, USA, 1995. IEEE Computer Society.
[26] K. Matkovic, W. Freiler, D. Gracanin, and H. Hauser, Comvis: A coordinated multiple views system for prototyping new visualization technology. Information Visualisation, International Conference on, 0: 215–220, 2008.
[27] D. Pyle, Data preparation for data mining. Morgan Kaufmann, 1999.
[28] T. Schreck, T. von Landesberger, and S. Bremm, Techniques for precision-based visual analysis of projected data. Information Visualization, 9 (3): 181–193, 2010.
[29] J. Seo and B. Shneiderman, A rank-by-feature framework for unsuper-vised multidimensional data exploration using low dimensional projections. In Proc. IEEE Symposium on Information Visualization INFOVIS 2004, pages 65–72, 2004.
[30] B. Shneiderman, The eyes have it: a task by data type taxonomy for information visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages 336 –343, Sept. 1996.
[31] C. Stolte, D. Tang, and P. Hanrahan, Polaris: a system for query, analysis, and visualization of multidimensional relational databases. IEEE Transactions on Visualization and Computer Graphics, 8 (1): 52–65, 2002.
[32] R. D. C. Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2009.
[33] M. O. Ward, Xmdvtool: integrating multiple methods for visualizing multivariate data. In Proceedings of the conference on Visualization' 94, VIS '94, pages 326–333. IEEE Computer Society Press, 1994.
[34] C. Weaver, Cross-filtered views for multidimensional visual analysis. IEEE Transactions on Visualization and Computer Graphics, 16: 192– 204, March 2010.
[35] M. Williams and T. Munzner, Steerable, progressive multidimensional scaling. In Proceedings of the IEEE Symposium on Information Visualization, pages 57–64, Washington, DC, USA, 2004. IEEE Computer Society.
[36] P. Wong and R. Bergeron, 30 years of multidimensional multivariate visualization. In Proc. Workshop on Scientific Visualization, IEEE Computer Society Press, 1995.
[37] J. Yang, D. Hubball, M. Ward, E. Rundensteiner, and W. Ribarsky, Value and relation display: Interactive visual exploration of large data sets with hundreds of dimensions. Visualization and Computer Graphics, IEEE Transactions on, 13 (3): 494 –507, 2007.
[38] J. Yang, M. O. Ward, E. A. Rundensteiner, and S. Huang, Visual hierarchical dimension reduction for exploration of high dimensional datasets. In VISSYM' 03: Proceedings of the symposium on Data visualisation 2003, pages 19–28. Eurographics Association, 2003.
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool