The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2011 vol.17)
pp: 2518-2527
Roeland Scheepens , TU Eindhoven
Niels Willems , TU Eindhoven
Huub van de Wetering , TU Eindhoven
Gennady Andrienko , Fraunhofer Institute IAIS
Natalia Andrienko , Fraunhofer Institute IAIS
Jarke J. van Wijk , TU Eindhoven
ABSTRACT
We consider moving objects as multivariate time-series. By visually analyzing the attributes, patterns may appear that explain why certain movements have occurred. Density maps as proposed by Scheepens et al. [25] are a way to reveal these patterns by means of aggregations of filtered subsets of trajectories. Since filtering is often not sufficient for analysts to express their domain knowledge, we propose to use expressions instead. We present a flexible architecture for density maps to enable custom, versatile exploration using multiple density fields. The flexibility comes from a script, depicted in this paper as a block diagram, which defines an advanced computation of a density field. We define six different types of blocks to create, compose, and enhance trajectories or density fields. Blocks are customized by means of expressions that allow the analyst to model domain knowledge. The versatility of our architecture is demonstrated with several maritime use cases developed with domain experts. Our approach is expected to be useful for the analysis of objects in other domains.
INDEX TERMS
Trajectories, Kernel Density Estimation, Multivariate Data, Geographical Information Systems, and Raster Maps.
CITATION
Roeland Scheepens, Niels Willems, Huub van de Wetering, Gennady Andrienko, Natalia Andrienko, Jarke J. van Wijk, "Composite Density Maps for Multivariate Trajectories", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 12, pp. 2518-2527, Dec. 2011, doi:10.1109/TVCG.2011.181
REFERENCES
[1] G. Andrienko and N. Andrienko, Spatio-temporal aggregation for visual analysis of movements. In Proceedings of IEEE Symposium on Visual Analytics Science and Technology, pages 51–58, 2008.
[2] G. Andrienko, N. Andrienko, S. Bremm, T. Schreck, T. Von Landes-berger, P. Bak, and D. Keim, Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns. Computer Graphics Forum, 29 (3): 913–922, 2010.
[3] G. Andrienko, N. Andrienko, U. Demšar, D. Dransch, J. Dykes, S. I. Fab-rikant, M. Jern, M.-J. Kraak, H. Schumann, and C. Tominski, Space, time and visual analytics. International Journal of Geographical Information Science, 24 (10): 1577–1600, 2010.
[4] G. Andrienko, N. Andrienko, M. Mladenov, M. Mock, and C. Pölitz, Discovering bits of place histories from people's activity traces. In Proceedings of IEEE Symposium on Visual Analytics Science and Technology, pages 59–66, 2010.
[5] N. Andrienko and G. Andrienko, Spatial generalization and aggregation of massive movement data. IEEE Transactions on Visualization and Computer Graphics, 17 (2): 205–219, 2011.
[6] C. Brunsdon, Estimating probability surfaces for geographical point data: An adaptive kernel algorithm. Computers and Geosciences, 21 (7): 877– 894, 1995.
[7] P. A. Burrough and R. A. McDonnell, Spatial analysis using continuous fields, chapter 8, pages 200–236. Oxford University Press, 1998.
[8] G. Câmara, D. Palomo, R. Cartaxo, M. Souza, and R. F. D. Oliveira, Towards a generalized map algebra: principles and data types. In Proceedings of the Workshop Brasileiro de Geoinformática, 2005.
[9] E. Chi, J. Riedl, P. Barry, and J. Konstan, Principles for information visualization spreadsheets. IEEE Computer Graphics and Applications, 18 (4): 30–38, 1998.
[10] T. Crnovrsanin, C. Muelder, C. Correa, and K.-L. Ma, Proximity-based visualization of movement trace data. In Proceedings of IEEE Symposium on Visual Analytics Science and Technology, pages 11–18, 2009.
[11] U. Demšar and K. Virrantaus, Space-time density of trajectories: Exploring spatio-temporal patterns in movement data. International Journal of Geographical Information Science, 24 (10): 1527–1542, 2010.
[12] K. Dinkla, M. A. Westenberg, H. M. Timmerman, S. van Hijum, and J. J. van Wijk, Comparison of multiple weighted hierarchies: Visual analytics for microbe community profiling. Computer Graphics Forum, 30 (3): 1141–1150, 2011.
[13] J. Downs, Time-geographic density estimation for moving point objects. In Geographic Information Science, volume 6292 of Lecture Notes in Computer Science, pages 16–26. 2010.
[14] R. Eccles, T. Kapler, R. Harper, and W. Wright, Stories in geotime. In Proceedings of IEEE Symposium on Visual Analytics Science and Technology, pages 19–26, 2007.
[15] H. Guo, Z. Wang, B. Yu, H. Zhao, and X. Yuan, Tripvista: Triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection. In Proceedings of IEEE Pacific Visualization Symposium, pages 163–170, 2011.
[16] J. Heer and M. Agrawala, Software design patterns for information visualization. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 1077–2626, 2006.
[17] C. Hurter, B. Tissoires, and S. Conversy, Accumulation as a tool for efficient visualization of geographical and temporal data. In Proceedings of the AGILE Workshop Geospatial Visual Analytics: Focus on Time, 2010.
[18] ITU. Technical characteristics for an automatic identification system using time division multiple access in the VHF maritime mobile band. Recommendation ITU-R M.1371-1, 2001.
[19] Y. Koldenhof, C. van der Tak, and C. Glansdorp, Risk awareness; a model to calculate the risk of a ship dynamically. International Scientific and Technical Conference on Maritime Traffic Engineering, 2009.
[20] R. Kosara, S. Miksch, and H. Hauser, Focus+context taken literally. IEEE Computer Graphics and Applications, 22 (1): 22–29, 2002.
[21] O. D. Lampe and H. Hauser, Interactive visualization of streaming data with kernel density estimation. In Proceedings of IEEE Pacific Visualization Symposium, pages 171–178, 2011.
[22] X. Li, A. Çöltekin, and M.-J. Kraak, Visual exploration of eye movement data using the space-time-cube. In Geographic Information Science, volume 6292 of Lecture Notes in Computer Science, pages 295–309. 2010.
[23] Z. Liao, Y. Yu, and B. Chen, Anomaly detection in GPS data based on visual analytics. In Proceedings of IEEE Symposium on Visual Analytics Science and Technology, pages 51–58, 2010.
[24] M. Riveiro and G. Falkman, Supporting the analytical reasoning process in maritime anomaly detection: Evaluation and experimental design. In Proceedings of Information Visualization (IV), pages 170–178, 2010.
[25] R. Scheepens, N. Willems, H. van de Wetering, and J. J. van Wijk, Interactive visualization of multivariate trajectory data with density maps. In Proceedings of IEEE Pacific Visualization Symposium, pages 147–154, 2011.
[26] B. W. Silverman, Density Estimation for Statistics and Data Analysis. Nr. 26 in Mono. on Stat and Appl. Probability. Chapman & Hall, 1992.
[27] A. Slingsby, J. Dykes, and J. Wood, Using treemaps for variable selection in spatio-temporal visualization. Information Visualization, 7 (3–4): 210– 224, 2008.
[28] C. D. Tomlin and J. K. Berry, A mathematical structure for cartographic modeling in environmental analysis. In Proceedings of the Symposium of the American Congress on Surveying and Mapping, pages 269–283, 1979.
[29] M. Wijffelaars, R. Vliegen, J. J. van Wijk, and E.-J. van der Linden, Generating color palettes using intuitive parameters. Computer Graphics Forum, 27 (8): 743–750, 2008.
[30] N. Willems, H. van de Wetering, and J. J. van Wijk, Visualization of vessel movements. Computer Graphics Forum, 28 (3): 959–966, 2009.
[31] N. Willems, H. van de Wetering, and J. J. van Wijk, Evaluation of the visibility of vessel movement features in trajectory visualizations. Computer Graphics Forum, 30 (3): 801–810, 2011.
[32] N. Willems, W. R. van Hage, G. de Vries, J. H. Janssens, and V. Malaisé, An integrated approach for visual analysis of a multisource moving objects knowledge base. International Journal of Geographical Information Science, 24 (10): 1543–1558, 2010.
[33] Wolfram research Inc. Manipulate. Accessed: 3 February 2011, http://reference.wolfram.com/mathematica/ refManipulate.html.
[34] J. Wood, J. Dykes, A. Slingsby, and K. Clarke, Interactive visual exploration of a large spatio-temporal dataset: Reflections on a geovisualization mashup. IEEE Transactions on Visualization and Computer Graphics, 13 (6): 1176–1183, 2007.
36 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool