This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Visualization of Parameter Space for Image Analysis
Dec. 2011 (vol. 17 no. 12)
pp. 2402-2411
A. Johannes Pretorius, School of Computing, University of Leeds
Mark-Anthony Bray, Broad Institute of MIT and Harvard
Anne E. Carpenter, Broad Institute of MIT and Harvard
Roy A. Ruddle, School of Computing, University of Leeds
Image analysis algorithms are often highly parameterized and much human input is needed to optimize parameter settings. This incurs a time cost of up to several days. We analyze and characterize the conventional parameter optimization process for image analysis and formulate user requirements. With this as input, we propose a change in paradigm by optimizing parameters based on parameter sampling and interactive visual exploration. To save time and reduce memory load, users are only involved in the first step - initialization of sampling - and the last step - visual analysis of output. This helps users to more thoroughly explore the parameter space and produce higher quality results. We describe a custom sampling plug-in we developed for CellProfiler - a popular biomedical image analysis framework. Our main focus is the development of an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. We implemented this in a prototype called Paramorama. It provides users with a visual overview of parameters and their sampled values. User-defined areas of interest are presented in a structured way that includes image-based output and a novel layout algorithm. To find optimal parameter settings, users can tag high- and low-quality results to refine their search. We include two case studies to illustrate the utility of this approach.

[1] T. Barlow and P. Neville, A comparison of 2-D visualizations of hierarchies. In Proceedings of the IEEE Symposium on Information Visualization, pages 131–138, 2001.
[2] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, and H. T. Vo, VisTrails: enabling interactive multiple-view visualizations. In Proceedings of the IEEE Conference on Visualization, pages 135–142, 2005.
[3] C. Brewer and M. Harrower, The Pennsylvania State University. ColorBrewer website.http://www.colorbrewer2.org. Last visited 20 June 2011.
[4] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo, Managing the evolution of dataflows with VisTrails. In Proceedings of the International Conference on Data Engineering Workshops, pages 71–75, 2006.
[5] A. E. Carpenter, T R. Jones, M. R. Lampbrecht, C. Clarke, I. H. Kang, O. Friman, D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, P. Golland, and D. M. Sabatini, CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biology, 7 (R100), 2006.
[6] R. Ferreira, B. Moon, J. Humphries, and A. Sussman, The virtual microscope. In Proceedings of the American Medical Informatics Association Annual Fall Symposium, pages 449–453, 1997.
[7] D. Foulser, IRIS Explorer: a framework for investigation. SIGGRAPH Computer Graphics, 29: 13–16, 1995.
[8] Imaging Platform, The Broad Institute of MIT and Harvard. CellProfiler, developer's version. http://www.cellprofiler.orgdevelopers.shtml. Last visited 20 June 2011.
[9] Imaging Platform, The Broad Institute of MIT and Harvard. CellProfiler website, citations. http://www.cellprofiler.orgcitations.shtml. Last visited 20 June 2011.
[10] T. J. Jankun-Kelly and K.-L. Ma, A spreadsheet interface for visualization exploration. In Proceedings of the IEEE Conference on Visualization, pages 69–76, 2000.
[11] B. Johnson and B. Shneiderman, Treemaps: a space-filling approach to the visualization of hierarchical information. In Proceedings of the IEEE Conference on Visualization, pages 284–291, 1991.
[12] A. Kobsa, User experiments with tree visualization systems. In Proceedings of the IEEE Symposium on Information Visualization, pages 9–16, 2004.
[13] M. R. Lamprecht, D. M. Sabatini, and A. E. Carpenter, CellProfiler: free, versatile software for automated biological image analysis. BioTechniques, 42 (1): 71–75, 2007.
[14] D. J. Logan and A. E. Carpenter, Screening cellular feature measurements for image-based assay development. Journal of Biomolecular Screening, 15 (7): 840–846, 2010.
[15] K.-L. Ma, Image graphs-a novel approach to visual data exploration. In Proceedings of the IEEE Conference on Visualization, pages 81–88, 1999.
[16] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber, Design galleries: a general approach to setting parameters for computer graphics and animation. In Proceedings of the Conference on Computer Graphics and Interactive Techniques, pages 389–400, 1997.
[17] A. J. Pretorius, Paramorama website. http://www.comp.leeds.ac.uk/scsajp/applications paramorama/. Last visited 20 June 2011.
[18] A. J. Pretorius and J. J. van Wijk, Visual inspection of multivariate graphs. Computer Graphics Forum, 27 (3): 967–974, 2008.
[19] B. Shneiderman, Dynamic queries for visual information seeking. IEEE Software, 11 (6): 70–77, 1994.
[20] A. Squillacote, The ParaView Guide. Kitware, Inc, Clifton Park, NY, USA, third edition, 2008.
[21] The Broad Institute of MIT and Harvard. Broad Bioimage Benchmark Collection. http://www.broadinstitute.org/bbbcsbs_bioimage_cnt.html. Last visited 20 June 2011.
[22] The Broad Institute of MIT and Harvard. Broad Bioimage Benchmark Collection, Human HT29 colon cancer 1. http://www.broadinstitute.org/bbbchuman_ht29_colon_cancer1.html. Last visited 20 June 2011.
[23] D. Treanor, N. Jordan-Owers, J. Hodrien, P. Quirke, and R. A. Ruddle, Virtual reality powerwall versus conventional microscope for viewing pathology slides: an experimental comparison. Histopathology, 55 (3): 294–300, 2009.
[24] L. Tweedie, B. Spence, H. Dawkes, and H. Su, The influence explorer. In Proceedings of the Conference on Human Factors in Computing Systems, pages 129–130, 1995.
[25] L. Tweedie and R. Spence, The prosection matrix: a tool to support the interactive exploration of statistical models and data. Computational Statistics, 13 (1): 65–76, 1998.
[26] J. J. van Wijk and C. W. A. M. van Overveld, Preset based interaction with high dimensional parameter spaces. Data Visualization: The State of the Art, pages 391–406, 2003.
[27] T. Walter, D. W. Shattuck, R. Baldock, M. E. Bastin, A. E. Carpenter, S. Duce, J. Ellenberg, A. Fraser, N. Hamilton, S. Pieper, M. A. Ragan, J. E. Schneider, P. Tomancak, and J.-K. Hériché, Visualization of image data from cells to organisms. Nature Methods Supplement, 7 (3): S26–S41, 2010.

Index Terms:
Information visualization, visual analytics, parameter space, image analysis, sampling.
Citation:
A. Johannes Pretorius, Mark-Anthony Bray, Anne E. Carpenter, Roy A. Ruddle, "Visualization of Parameter Space for Image Analysis," IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2402-2411, Dec. 2011, doi:10.1109/TVCG.2011.253
Usage of this product signifies your acceptance of the Terms of Use.