Subscribe

Issue No.12 - Dec. (2011 vol.17)

pp: 2364-2373

Ozan Ersoy , University of Groningen, The Netherlands

Christophe Hurter , DGAC/DSNA, Toulouse, France

Fernando Paulovich , University of São Paulo, São Carlos/SP, Brazil

Gabriel Cantareiro , University of São Paulo, São Carlos/SP, Brazil

Alex Telea , University of Groningen, The Netherlands

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.233

ABSTRACT

In this paper, we present a novel approach for constructing bundled layouts of general graphs. As layout cues for bundles, we use medial axes, or skeletons, of edges which are similar in terms of position information. We combine edge clustering, distance fields, and 2D skeletonization to construct progressively bundled layouts for general graphs by iteratively attracting edges towards the centerlines of level sets of their distance fields. Apart from clustering, our entire pipeline is image-based with an efficient implementation in graphics hardware. Besides speed and implementation simplicity, our method allows explicit control of the emphasis on structure of the bundled layout, i.e. the creation of strongly branching (organic-like) or smooth bundles. We demonstrate our method on several large real-world graphs.

INDEX TERMS

Graph layouts, edge bundles, image-based information visualization.

CITATION

Ozan Ersoy, Christophe Hurter, Fernando Paulovich, Gabriel Cantareiro, Alex Telea, "Skeleton-Based Edge Bundling for Graph Visualization",

*IEEE Transactions on Visualization & Computer Graphics*, vol.17, no. 12, pp. 2364-2373, Dec. 2011, doi:10.1109/TVCG.2011.233REFERENCES

- [1] J. Abello, F. van Ham, and N. Krishnan, AskGraphView: A large graph visualisation system.
IEEE TVCG, 12 (5): 669–676, 2006.- [2] D. Archambault, T. Munzner, and D. Auber, Grouse: Feature-based and steerable graph hierarchy exploration.
In Proc. EuroVis, pages 67–74, 2007.- [3] D. Auber, Tulip visualization framework, 2011. tulip.labri.fr.
- [4] T. Cao, K. Tang, A. Mohamed, and T. Tan, Parallel banding algorithm to compute exact distance transform with the GP U.
In Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, pages 134–141, 2010.- [5] D. Chang, M. Kantardzic, and M. Ouyang, Hierarchical clustering with cuda/gpu.
In Proc. ISCA, pages 130–135, 2009.- [6] L. Costa and R. Cesar,
Shape analysis and classification: Theory and practice. CRC Press, 2000.- [7] W. Cui, H. Zhou, H. Qu, P. Wong, and X. Li, Geometry-based edge clustering for graph visualization.
IEEE TVCG, 14 (6): 1277–1284, 2008.- [8] M. de Hoon, S. Imoto, J. Nolan, and S. Myiano, Open source clustering software.
Bioinformatics, 20 (9): 1453–1454, 2004.- [9] M. Dickerson, D. Eppstein, M. Goodrich, and J. Meng, Confluent drawings: Visualizing non-planar diagrams in a planar way.
In Proc. Graph Drawing, pages 1–12, 2003.- [10] T. Dwyer, K. Marriott, and M. Wybrow, Integrating edge routing into forcedirected layout.
In Proc. Graph Drawing, pages 8–19, 2007.- [11] G. Ellis and A. Dix, A taxonomy of clutter reduction for information visualisation.
IEEE TVCG, 13 (6): 1216–1223, 2007.- [12] E. Gansner, Y. Hu, S. North, and C. Scheidegger, Multilevel agglomerative edge bundling for visualizing large graphs.
In Proc. PacificVis, pages 187–194, 2010.- [13] E. Gansner and Y. Koren, Improved circular layouts.
In Proc. Graph Drawing, pages 386–398, 2006.- [14] D. Holten, Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data.
IEEE TVCG, 12 (5): 741–748, 2006.- [15] D. Holten and J. J. van Wijk, Force-directed edge bundling for graph visualization.
Comp. Graph. Forum, 28 (3): 670–677, 2009.- [16] C. Hurter, B. Tissoires, and S. Conversy, FromDaDy: Spreading data across views to support iterative exploration of aircraft trajectories.
IEEE TVCG, 15 (6): 1017–1024, 2009.- [17] I. Tollis, G. D. Battista, P. Eades, and R. Tamassia,
Graph drawing: Algorithms for the visualization of graphs. Prentice Hall, 1999.- [18] G. Katz and J. Kider, All-pairs shortest-paths for large graphs on the GPU.
In Proc. Graphics Hardware, pages 208–216, 2008.- [19] R. Klette and A. Rosenfeld,
Digital geometry: Geometric methods for digital picture analysis. Morgan Kaufmann, 2004.- [20] I. Kovacs, A. Feher, and B. Julesz, Medial-point description of shape: A representation for action coding and its phychophysical correlates.
Vision research, 38: 2323–2333, 1998.- [21] A. Lambert, R. Bourqui, and D. Auber, 3D edge bundling for geographical data visualization.
In Proc. Information Visualisation, pages 329–335, 2010.- [22] A. Lambert, R. Bourqui, and D. Auber, Winding roads: Routing edges into bundles.
Comp. Graph. Forum, 29 (3): 432–439, 2010.- [23] F. Paulovich, L. Nonato, R. Minghim, and H. Levkowitz, Least square projection: A fast high-precision multidimensional projection technique and its application to document mapping.
IEEE TVCG, 14 (3): 564–575, 2008.- [24] D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Winograd, Flow map layout.
In Proc. InfoVis, pages 219–224, 2005.- [25] S. Pizer, K. Siddiqi, G. Szekely, J. Damon, and S. Zucker, Multiscale medial loci and their properties.
IJCV, 55 (2–3): 155–179, 2003.- [26] H. Qu, H. Zhou, and Y. Wu, Controllable and progressive edge clustering for large networks.
In Proc. Graph Drawing, pages 399–404, 2006.- [27] G. Salton, Developments in automatic text retrieval.
Science, 253: 974– 980, 1991.- [28] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. Zucker, Hamilton-Jacobi skeletons.
IJCV, 48 (3): 215–231, 2002.- [29] K. Siddiqi and S. Pizer,
Medial Representations: Mathematics, Algorithms and Applications. Springer, 1999.- [30] R. Strzodka and A. Telea, Generalized distance transforms and skeletons in graphics hardware.
In Proc. VisSym, pages 221–230, 2004.- [31] A. Telea, CUDA skeletonization and image processing toolkit, 2011. www.cs.rug.nl/∼alextCUDASKEL.
- [32] A. Telea and O. Ersoy, Image-based edge bundles: Simplified visualization of large graphs.
Comp. Graph. Forum, 29 (3): 543–551, 2010.- [33] A. Telea and J. J. van Wijk, An augmented fast marching method for computing skeletons and centerlines.
In Proc. VisSym, pages 251–259, 2002.- [34] F. vam Ham, Using multilevel call matrices in large software projects.
In Proc. InfoVis, pages 227–232, 2003.- [35] R. van Liere and W. de Leeuw, GraphSplatting: Visualizing graphs as continuous fields.
IEEE TVCG, 9 (2): 206–212, 2003.- [36] H. Zhou, X. Yuan, W. Cui, H. Qu, and B. Chen, Energy-based hierarchical edge clustering of graphs.
In Proc. PacificVis, pages 55–62, 2008. |