The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2011 vol.17)
pp: 2203-2212
Enrico Bertini , University of Konstanz
ABSTRACT
In this paper, we present a systematization of techniques that use quality metrics to help in the visual exploration of meaningful patterns in high-dimensional data. In a number of recent papers, different quality metrics are proposed to automate the demanding search through large spaces of alternative visualizations (e.g., alternative projections or ordering), allowing the user to concentrate on the most promising visualizations suggested by the quality metrics. Over the last decade, this approach has witnessed a remarkable development but few reflections exist on how these methods are related to each other and how the approach can be developed further. For this purpose, we provide an overview of approaches that use quality metrics in high-dimensional data visualization and propose a systematization based on a thorough literature review. We carefully analyze the papers and derive a set of factors for discriminating the quality metrics, visualization techniques, and the process itself. The process is described through a reworked version of the well-known information visualization pipeline. We demonstrate the usefulness of our model by applying it to several existing approaches that use quality metrics, and we provide reflections on implications of our model for future research.
INDEX TERMS
Quality Metrics, High-Dimensional Data Visualization.
CITATION
Enrico Bertini, Andrada Tatu, Daniel Keim, "Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 12, pp. 2203-2212, Dec. 2011, doi:10.1109/TVCG.2011.229
REFERENCES
[1] ggplot2. http://had.co.nzggplot2/.
[2] Protovis. http://vis.stanford.eduprotovis/.
[3] Tableau. http:/www.tableausoftware.com/.
[4] G. Albuquerque et al. Improving the visual analysis of high-dimensional datasets using quality measures. In Proc. IEEE Symp. Visual Analytics Science and Technology (VAST), 2010.
[5] M. Ankerst, S. Berchtold, and D. A. Keim, Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In Proc. IEEE Symp. Information Visualization (InfoVis), 1998.
[6] R. A. Becker, W. S. Cleveland, and M.-J. Shyu, The visual design and control of trellis display. Journal of Computational and Graphical Statistics, 5 (2): 123–155, 1996.
[7] J. Bertin, Semiology of graphics. University of Wisconsin Press, 1983.
[8] E. Bertini and D. Lalanne, Investigating and reflecting on the integration of automatic data analysis and visualization in knowledge discovery. SIGKDD Explor. Newsl., 11: 9–18, 2010.
[9] E. Bertini and G. Santucci, Quality metrics for 2D scatterplot graphics: Automatically reducing visual clutter. In Proc. Smart Graphics (SG), 2004.
[10] E. Bertini and G. Santucci, Visual quality metrics. In Proc. AVI workshop on BEyond time and errors: noveL evaluation methods for Information Visualization (BELIV). ACM, 2006.
[11] R. Brath, Metrics for effective information visualization. In Proc. IEEE Symp. Information Visualization (InfoVis), 1997.
[12] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in information visualization: using vision to think. Morgan Kaufmann Publishers Inc., 1999.
[13] E. H. Chi, A taxonomy of visualization techniques using the data state reference model. In Proc. IEEE Symp. Information Visualization (Info-Vis), 2000.
[14] Q. Cui, M. Ward, E. Rundensteiner, and J. Yang, Measuring data abstraction quality in multiresolution visualizations. IEEE Trans. on Visualization and Computer Graphics, 12: 709–716, 2006.
[15] A. Dasgupta and R. Kosara, Pargnostics: Screen-space metrics for parallel coordinates. IEEE Trans. on Visualization and Computer Graphics, 16: 1017–1026, 2010.
[16] C. Dunne and B. Shneiderman, Improving graph drawing readability by incorporating readability metrics: A software tool for network analysts. Technical Report HCIL-2009-13, University of Maryland, 2009.
[17] G. Ellis and A. Dix, Enabling automatic clutter reduction in parallel coordinate plots. IEEE Trans. on Visualization and Computer Graphics, 12: 717–724, 2006.
[18] G. Ellis and A. Dix, A taxonomy of clutter reduction for information visualisation. IEEE Trans. on Visualization and Computer Graphics, 13: 1216–1223, 2007.
[19] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, The KDD process for extracting useful knowledge from volumes of data. Commun. ACM, 39: 27– 34, 1996.
[20] B. J. Ferdosi et al. Finding and visualizing relevant subspaces for clustering high-dimensional astronomical data using connected morphological operators. In Proc. IEEE Conf. Visual Analytics Science and Technology (VAST), 2010.
[21] J. H. Friedman and J. W. Tukey, A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput., 23: 881–890, September 1974.
[22] D. Guo, Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Information Visualization, 2: 232–246, 2003.
[23] M. Hahsler, K. Hornik, and C. Buchta, Getting things in order: An introduction to the R package seriation. Journal of Statistical Software, 25 (3): p. 1–34, 3 2008.
[24] P. Hoffman, G. Grinstein, and D. Pinkney, Dimensional anchors: a graphic primitive for multidimensional multivariate information visualizations. In Proc. Workshop on New Paradigms in Information Visualization and Manipulation (NPIVM). ACM, 1999.
[25] C. B. Hurley and R. W. Oldford, Pairwise display of high-dimensional information via eulerian tours and hamiltonian decompositions. Journal of Computational and Graphical Statistics, 19 (4): 861–886, 2010.
[26] A. Inselberg and B. Dimsdale, Parallel coordinates: a tool for visualizing multi-dimensional geometry. In Proc. IEEE Conf. on Visualization (VIS). IEEE Computer Society Press, 1990.
[27] H. Jänicke and M. Chen, A salience-based quality metric for visualization. Computer Graphics Forum (Proc. EuroVis), 29 (3): 1183–1192, 2010.
[28] J. Johansson and M. Cooper, A screen space quality method for data abstraction. Computer Graphics Forum (Proc. EuroVis), 27 (3): 1039–1046, 2008.
[29] J. Johansson, C. Forsell, M. Lind, and M. Cooper, Perceiving patterns in parallel coordinates: determining thresholds for identification of relationships. Information Visualization, 7: 152–162, April 2008.
[30] S. Johansson and J. Johansson, Interactive dimensionality reduction through user-defined combinations of quality metrics. IEEE Trans. on Visualization and Computer Graphics, 15: 993–1000, 2009.
[31] D. A. Keim et al. Visual analytics: Scope and challenges. In S. Simoff, M. H. Boehlen, and A. Mazeika editors , Visual Data Mining: Theory, Techniques and Tools for Visual Analytics. Springer, 2008.
[32] D. A. Keim, M. C. Hao, U. Dayal, and M. Hsu, Pixel bar charts: A visualization technique for very large multi-attribute data sets. Information Visualization, 1 (1): 20–34, 2002.
[33] J. LeBlanc, M. O. Ward, and N. Wittels, Exploring N-dimensional databases. In Proc. of the IEEE Conf. on Visualization (VIS). IEEE Computer Society Press, 1990.
[34] J. Li, J.-B. Martens, and J. J. van Wijk, Judging correlation from scatter-plots and parallel coordinate plots. Information Visualization, 9: 13–30, 2010.
[35] A. MacEachren et al. Exploring high-D spaces with multiform matrices and small multiples. In Proc. IEEE Symp. Information Visualization (InfoVis), 2003.
[36] J. Mackinlay, Automating the design of graphical presentations of relational information. ACM Trans. on Graphics, 5: 110–141, 1986.
[37] N. Miller, B. Hetzler, G. Nakamura, and P. Whitney, The need for metrics in visual information analysis. In Proc. Workshop on New Paradigms in Information Visualization and Manipulation. ACM, 1997.
[38] D. Oelke et al. Visual boosting in pixel-based visualizations. Computer Graphics Forum (Proc. EuroVis), 2011.
[39] W. Peng, M. O. Ward, and E. A. Rundensteiner, Clutter reduction in multi-dimensional data visualization using dimension reordering. In Proc. IEEE Symp. Information Visualization (InfoVis), 2004.
[40] R. Rao and S. K. Card, The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information. In Proc. SIGCHI Conf. on Human factors in Computing Systems (CHI). ACM, 1994.
[41] R. A. Rensink and G. Baldridge, The perception of correlation in scat-terplots. Computer Graphics Forum (Proc. EuroVis), 29 (3): 1203–1210, 2010.
[42] J. Schneidewind, M. Sips, and D. A. Keim, Pixnostics: Towards measuring the value of visualization. In Proc. IEEE Symp. Visual Analytics Science and Technology (VAST), 2006.
[43] E. Segel and J. Heer, Narrative visualization: Telling stories with data. IEEE Trans. on Visualization and Computer Graphics, 16: 1139–1148, 2010.
[44] J. Seo and B. Shneiderman, A rank-by-feature framework for unsuper-vised multidimensional data exploration using low dimensional projections. Information Visualization, 4: 96–113, 2005.
[45] J. H. Siegel, E. J. Farrell, R. M. Goldwyn, and H. P. Friedman, The surgical implication of physiologic patterns in myocardial infarction shock. Surgery, 72: 126–141, 1972.
[46] M. Sips, B. Neubert, J. P. Lewis, and P. Hanrahan, Selecting good views of high-dimensional data using class consistency. Computer Graphics Forum (Proc. EuroVis), 28 (3), 2009.
[47] A. Strauss and J. M. Corbin, Basics of Qualitative Research : Techniques and Procedures for Developing Grounded Theory. SAGE Publications, 1998.
[48] A. Tatu et al. Combining automated analysis and visualization techniques for effective exploration of high-dimensional data. In Proc. IEEE Symp. Visual Analytics Science and Technology (VAST), 2009.
[49] A. Tatu et al. Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data. In Proc. International Conf. on Advanced Visual Interfaces (AVI). ACM, 2010.
[50] M. Tory and T. Moller, Rethinking visualization: A high-level taxonomy. In Proc. IEEE Symp. Information Visualization (InfoVis), 2004.
[51] E. R. Tufte, The visual display of quantitative information. Graphics Press, 1986.
[52] C. Ware, H. Purchase, L. Colpoys, and M. McGill., Cognitive measurements of graph aesthetics. Information Visualization, 1: 103–110, June 2002.
[53] M. Wattenberg, A note on space-filling visualizations and space-filling curves. In Proc. IEEE Symp. Information Visualization (InfoVis), 2005.
[54] L. Wilkinson, A. Anand, and R. Grossman, Graph-theoretic scagnostics. In Proc. IEEE Symp. Information Visualization (InfoVis), 2005.
[55] L. Wilkinson, A. Anand, and R. Grossman, High-dimensional visual analytics: Interactive exploration guided by pairwise views of point distributions. IEEE Trans. on Visualization and Computer Graphics, 12: 1363– 1372, 2006.
[56] C. William S. and M. E. McGill, Dynamic Graphics for Statistics. Wadsworth Inc., 1988.
[57] J. Yang, D. Hubball, M. O. Ward, E. A. Rundensteiner, and W. Ribarsky, Value and relation display: Interactive visual exploration of large data sets with hundreds of dimensions. IEEE Trans. on Visualization and Computer Graphics, 13: 494–507, 2007.
[58] J. Yang, W. Peng, M. O. Ward, and E. A. Rundensteiner, Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets. In Proc. IEEE Symp. Information Visualization (In-foVis), 2003.
[59] J. Yang, M. O. Ward, E. A. Rundensteiner, and A. Patro, Interring: a visual interface for navigating and manipulating hierarchies. Information Visualization, 2: 16–30, March 2003.
[60] J. S. Yi, Y. a. Kang, J. Stasko, and J. Jacko, Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. on Visualization and Computer Graphics, 13: 1224–1231, 2007.
127 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool