The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2011 vol.17)
pp: 2153-2162
Roy van Pelt , Eindhoven University of Technology, The Netherlands
Javier Olivan Bescos , Philips Healthcare, The Netherlands
Marcel Breeuwer , Philips Healthcare, The Netherlands
Rachel E. Clough , NIHR Comprehensive Biomedical Research Centre of Guy's and St Thomas' NHS Foundation Trust and King's College London, United Kingdom
M. Eduard Gröller , Vienna University of Technology, Austria
Bart ter Haar Romenij , Eindhoven University of Technology, The Netherlands
Anna Vilanova , Eindhoven University of Technology, The Netherlands
Better understanding of hemodynamics conceivably leads to improved diagnosis and prognosis of cardiovascular diseases. Therefore, an elaborate analysis of the blood-flow in heart and thoracic arteries is essential. Contemporary MRI techniques enable acquisition of quantitative time-resolved flow information, resulting in 4D velocity fields that capture the blood-flow behavior. Visual exploration of these fields provides comprehensive insight into the unsteady blood-flow behavior, and precedes a quantitative analysis of additional blood-flow parameters. The complete inspection requires accurate segmentation of anatomical structures, encompassing a time-consuming and hard-to-automate process, especially for malformed morphologies. We present a way to avoid the laborious segmentation process in case of qualitative inspection, by introducing an interactive virtual probe. This probe is positioned semi-automatically within the blood-flow field, and serves as a navigational object for visual exploration. The difficult task of determining position and orientation along the view-direction is automated by a fitting approach, aligning the probe with the orientations of the velocity field. The aligned probe provides an interactive seeding basis for various flow visualization approaches. We demonstrate illustration-inspired particles, integral lines and integral surfaces, conveying distinct characteristics of the unsteady blood-flow. Lastly, we present the results of an evaluation with domain experts, valuing the practical use of our probe and flow visualization techniques.
Probing, Flow visualization, Illustrative visualization, Multivalued images, Phase-contrast cine MRI.
Roy van Pelt, Javier Olivan Bescos, Marcel Breeuwer, Rachel E. Clough, M. Eduard Gröller, Bart ter Haar Romenij, Anna Vilanova, "Interactive Virtual Probing of 4D MRI Blood-Flow", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 12, pp. 2153-2162, Dec. 2011, doi:10.1109/TVCG.2011.215
[1] J. Astola, P. Haavisto, and Y. Neuvo, Vector median filters. Proceedings of the IEEE, 78 (4): 678 –689, April 1990.
[2] S. Born, A. Wiebel, J. Friedrich, G. Scheuermann, and D. Bartz, Illustrative stream surfaces. IEEE Transactions on Visualization and Computer Graphics, 16 (6): 1329–1338, 2010.
[3] K. Bürger, F. Ferstl, H. Theisel, and R. Westermann, Interactive streak surface visualization on the GPU. IEEE Transactions on Visualization and Computer Graphics, 15 (6): 1259–1266, November 2009.
[4] N. Cuntz, A. Pritzkau, and A. Kolb, Time-adaptive lines for the interactive visualization of unsteady flow data sets. Computer Graphics Forum, 28 (8): 2165-2175, 2009.
[5] W. C. de Leeuw and J. J. van Wijk, A probe for local flow field visualization. In Proceedings of the 4th conference on Visualization '93, IEEE Visualization, pages 39-45. IEEE Computer Society, 1993.
[6] M. H. Everts, H. Bekker, J. B. Roerdink, and T. Isenberg, Depth-dependent halos: Illustrative rendering of dense line data. IEEE Transactions on Visualization and Computer Graphics, 15 (6): 1299-1306, 2009.
[7] C. Garth, H. Krishnan, X. Tricoche, T. Bobach, and K. Joy, Generation of accurate integral surfaces in time-dependent vector fields. IEEE Transactions on Visualization and Computer Graphics, 14 (6): 1404– 1411, November 2008.
[8] S. Gumhold, Splatting illuminated ellipsoids with depth correction. In Vision, Modeling, and Visualization (VMV), pages 245-252, 2003.
[9] A. Hennemuth, O. Friman, C. Schumann, J. Bock, J. Drexl, M. Huelle-brand, M. Markl, and H.-O. Peitgen, Fast interactive exploration of 4D MRI flow data. Proceeding ofSPIE, 7964:79640E -1- 79640E-11, 2011.
[10] M. Hummel, C. Garth, B. Hamann, H. Hagen, and K. Joy, Iris: Illustrative rendering for integral surfaces. IEEE Transactions on Visualization and Computer Graphics, 16 (6): 1319-1328, November 2010.
[11] A. Joshi and P. Rheingans, Illustration-inspired techniques for visualizing time-varying data. In IEEE Visualization 2005, pages 679 - 686, Los Alamitos, CA, USA, 2005. IEEE Computer Society.
[12] P. Kipfer, M. Segal, and R. Westermann, UberFlow: a GPU-based particle engine. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, HWWS '04, pages 115-122, New York, NY, USA, 2004. ACM.
[13] H. Knutsson, Representing local structure using tensors. In The 6th Scandinavian Conference on Image Analysis, pages 244-251, Oulu, Finland, June 1989.
[14] P. Kohlmann, S. Bruckner, A. Kanitsar, and M. E. Groller, Livesync: Deformed viewing spheres for knowledge-based navigation. IEEE Transactions on Visualization and Computer Graphics, 13: 1544-1551, November 2007.
[15] A. Kohn, J. Klein, F. Weiler, and H.-O. Peitgen, A GPU-based fiber tracking framework using geometry shaders. In M. I. Miga, and K. H. Wong editors, , Medical Imaging 2009: Visualization, Image-Guided Procedures, and Modeling, volume 7261, pages 72611J-1 - 72611J-10. SPIE, 2009.
[16] J. Krüger, P. Kipfer, P. Kondratieva, and R. Westermann, A particle system for interactive visualization of 3D flows. IEEE Transactions on Visualization and Computer Graphics, 11 (6): 744-756, November 2005.
[17] M. Markl, M. T. Draney, M. D. Hope, J. M. Levin, F. P. Chan, M. T. Alley, N. J. Pelc, and R. J. Herfkens, Time-resolved 3-dimensional velocity mapping in the thoracic aorta: Visualization of 3-directional blood flow patterns in healthy volunteers and patients. Journal of computer assisted tomography, 28 (4): 459-468, 2005.
[18] M. Markl, P. J. Kilner, and T. Ebbers, Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson, 13: 7, 2011.
[19] O. Mattausch, T. Theußl, H. Hauser, and M. E. Groller, Strategies for interactive exploration of 3d flow using evenly-spaced illuminated streamlines. In K. Joy editor, Proceedings of Spring Conference on Computer Graphics, pages 213-222. SCCG, April 2003.
[20] M. Mlejnek, P. Ermes, A. Vilanova, R. van der Rijt, H. van den Bosch, F. Gerritsen, and M. E. Groller, Profile flags: a novel metaphor for probing of T2 maps. In IEEE Visualization 2005, pages 599-606, Los Alamitos, CA, USA, 2005. IEEE Computer Society.
[21] M. Persson, J. E. Solem, K. Markenroth, J. Svensson, and A. Heyden, Phase contrast MRI segmentation using velocity and intensity. Scale Space and PDE Methods in Computer Vision, 3459 (4): 119-130, March 2005.
[22] K. Pruessmann, P. Boesiger, S. Kozerke, and U. Dydak (Gyrotools). GT-Flow. (last visited).
[23] V. Prčkovska, T H. J. M. Peeters, M. van Almsick, B. ter Haar Romeny, and A. Vilanova, Fused DTI/HARDI visualization. IEEE Transactions on Visualization and Computer Graphics, 99, 2010.
[24] S. Venkataraman (NVidia). 4D visualization of cardiac flow. 2009_GTC2010.pdf. GPU technology conference, 2010.
[25] J. S. Sobel, A. S. Forsberg, D. H. Laidlaw, R. C. Zeleznik, D. F. Keefe, I. Pivkin, G. E. Karniadakis, P. Richardson, and S. Swartz, Particle flurries: Synoptic 3D pulsatile flow visualization. IEEE Comput. Graph. Appl., 24: 76–85, March 2004.
[26] S. Uribe, T. Tangchaoren, V. Parish, I. Wolf, R. Razavi, G. Greil, and T. Schaeffter, Volumetric cardiac quantification by using 3D dual-phase whole-heart MR imaging. Radiology, 248 (2): 606–614, June 2008.
[27] R. van Pelt, J. O. Bescos, M. Breeuwer, R. E. Clough, M. E. Gröller, B. ter Haar Romenij, and A. Vilanova, Exploration of 4D MRI blood flow using stylistic visualization. IEEE Transactions on Visualization and Computer Graphics, 16 (6): 1339–1347, 2010.
[28] J. Wilhelms and A. Van Gelder, Octrees for faster isosurface generation. ACM Transactions on Graphics, 11: 201–227, July 1992.
[29] World Heart Organization. Fact sheet cardiovascular diseases. fs317/, 2011.
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool