The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2011 vol.17)
pp: 2135-2143
Fabio Marton , CRS4, Italy
Marco Agus , CRS4, Italy
Andreas Elsener , University of Zurich, Switzerland
Christoph P.E. Zollikofer , University of Zurich, Switzerland
M. Gopi , University of California, Irvine, USA
Enrico Gobbetti , CRS4, Italy
Susanne K. Suter , University of Zurich, Switzerland
ABSTRACT
Large scale and structurally complex volume datasets from high-resolution 3D imaging devices or computational simulations pose a number of technical challenges for interactive visual analysis. In this paper, we present the first integration of a multiscale volume representation based on tensor approximation within a GPU-accelerated out-of-core multiresolution rendering framework. Specific contributions include (a) a hierarchical brick-tensor decomposition approach for pre-processing large volume data, (b) a GPU accelerated tensor reconstruction implementation exploiting CUDA capabilities, and (c) an effective tensor-specific quantization strategy for reducing data transfer bandwidth and out-of-core memory footprint. Our multiscale representation allows for the extraction, analysis and display of structural features at variable spatial scales, while adaptive level-of-detail rendering methods make it possible to interactively explore large datasets within a constrained memory footprint. The quality and performance of our prototype system is evaluated on large structurally complex datasets, including gigabyte-sized micro-tomographic volumes.
INDEX TERMS
GPU/CUDA, multiscale, tensor reconstruction, interactive volume visualization, multiresolution rendering.
CITATION
José A. Iglesias Guitián, Fabio Marton, Marco Agus, Andreas Elsener, Christoph P.E. Zollikofer, M. Gopi, Enrico Gobbetti, Susanne K. Suter, "Interactive Multiscale Tensor Reconstruction for Multiresolution Volume Visualization", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 12, pp. 2135-2143, Dec. 2011, doi:10.1109/TVCG.2011.214
REFERENCES
[1] vmmlib: A vector and matrix math library, http:/vmmlib.sf.net.
[2] B. W. Bader and T. G. Kolda, Algorithm 862: Matlab tensor classes for fast algorithm prototyping. ACM Transactions on Mathematical Software, 32 (4): 635-653, 2006.
[3] J. Beyer, M. Hadwiger, T. Moller, and L. Fritz, Smooth mixed-resolution GPU volume rendering. In Proc. IEEE/EG Symposium on Volume and Point-Based Graphics, pages 163-170, 2008.
[4] T.-c. Chiueh, C.-k. Yang, T. He, H. Pfister, and A. E. Kaufman, Integrated volume compression and visualization. In Proc. IEEE Visualization, pages 329-336. Computer Society Press, 1997.
[5] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, GigaVoxels: Ray-guided streaming for efficient and detailed voxel rendering. In Proc. Symposium on Interactive 3D Graphics and Games, pages 15-22. ACM SIG-GRAPH, 2009.
[6] L. de Lathauwer, B. de Moor, and I. Vandewalle, A multilinear singular value decomposition. SIAM Journal of Matrix Analysis and Applications, 21 (4): 1253-1278, 2000.
[7] M. Do and M. Vetterli, Pyramidal directional filter banks and curvelets. In Proc. IEEE Image Processing, volume 3, pages 158-161, 2001.
[8] M. Do and M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Im. Proc, 14 (12): 2091-2106, 2005.
[9] K. Engel, M. Hadwiger, I. M. Kniss, C. Rezk-Salama, and D. Weiskopf, Real-Time Volume Graphics. AK Peters, 2006.
[10] N. Fout, H. Akiba, K.-L. Ma, A. Lefohn, and I. Kniss, High quality rendering of compressed volume data formats. In Proceedings Eurographics, pages 77-84 Jun 2005.
[11] N. Fout and K.-L. Ma, Transform coding for hardware-accelerated volume rendering. IEEE Transaction on Visualization and Computer Graphics, 13 (6): 1600-1607, 2007.
[12] E. Gobbetti, F. Marton, and I. A. I. Guitián, A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets. The Visual Computer, 24 (7-9): 797-806, Jul 2008.
[13] S. Guthe, M. Wand, I. Gonser, and W. Strasser, Interactive rendering of large volume data sets. In Proc. IEEE Visualization, pages 53-60, 2002.
[14] I. A. Iglesias Guitián, E. Gobbetti, and F. Marton, View-dependent exploration of massive volumetric models on large scale light field displays. The Visual Computer, 26 (6-8): 1037-1047, 2010.
[15] T. G. Kolda and B. W. Bader, Tensor decompositions and applications. Siam Review, 51 (3): 455-500, Sep 2009.
[16] P. Ljung, C. Lundstrom, and A. Ynnerman, Multiresolution interblock interpolation in direct volume rendering. In Proc. Eurographics/IEEE TCVG Symposium on Visualization, pages 259-266, 2006.
[17] P. Ljung, C. Winskog, A. Persson, C. Lundstrom, and A. Ynnerman, Full body virtual autopsies using a state-of-the-art volume rendering pipeline. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 869-876, Oct 2006.
[18] NVIDIA. CUDA C best practices guide, version 3.2 edition, Aug 2010.
[19] NVIDIA. CUDA Cprogramming guide, version 3.2 edition, Nov 2010.
[20] R. Parys and G. Knittel, Giga-voxel rendering from compressed data on a display wall. In WSCG, 2009.
[21] F. Rodler, Wavelet based 3D compression with fast random access for very large volume data. In Proc. Pacific Graphics, pages 108-117, 1999.
[22] I. Schneider and R. Westermann, Compression domain volume rendering. In Proc. IEEE Visualization, pages 293-300, 2003.
[23] S. K. Suter, C. P. Zollikofer, and R. Pajarola, Application of tensor approximation to multiscale volume feature representations. In Proc. Vision, Modeling and Visualization, pages 203-210, 2010.
[24] Y.-T. Tsai and Z.-C. Shih, All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Transactions on Graphics, 25 (3): 967-976, 2006.
[25] I. E. Vollrath, T. Schafhitzel, and T. Ertl, Employing complex GPU data structures for the interactive visualization of adaptive mesh refinement data. In Proc. Volume Graphics, pages 55-58, 2006.
[26] H. Wang, Q. Wu, L. Shi, Y. Yu, and N. Ahuja, Out-of-core tensor approximation of multi-dimensional matrices of visual data. ACM Transactions on Graphics, 24 (3): 527-535, Aug 2005.
[27] Q. Wu, T. Xia, C. Chen, H.-Y S. Lin, H. Wang, and Y. Yu, Hierarchical tensor approximation of multidimensional visual data. IEEE Transactions on Visualization and Computer Graphics, 14 (1): 186—199, Feb 2008.
[28] B.-L. Yeo and B. Liu, Volume rendering of DCT-based compressed 3D scalar data. IEEE Transactions on Visualization and Computer Graphics, 1 (1): 29-43, 1995.
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool