This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
WYSIWYG (What You See is What You Get) Volume Visualization
Dec. 2011 (vol. 17 no. 12)
pp. 2106-2114
Hanqi Guo, Key Laboratory of Machine Perception (Ministry of Education), and School of EECS, Peking University / Center for Computational Science and Engineering, Peking University, Beijing, P.R. China
Ningyu Mao, Key Laboratory of Machine Perception (Ministry of Education), and School of EECS, Peking University
Xiaoru Yuan, Key Laboratory of Machine Perception (Ministry of Education), and School of EECS, Peking University / Center for Computational Science and Engineering, Peking University, Beijing, P.R. China
In this paper, we propose a volume visualization system that accepts direct manipulation through a sketch-based What You See Is What You Get (WYSIWYG) approach. Similar to the operations in painting applications for 2D images, in our system, a full set of tools have been developed to enable direct volume rendering manipulation of color, transparency, contrast, brightness, and other optical properties by brushing a few strokes on top of the rendered volume image. To be able to smartly identify the targeted features of the volume, our system matches the sparse sketching input with the clustered features both in image space and volume space. To achieve interactivity, both special algorithms to accelerate the input identification and feature matching have been developed and implemented in our system. Without resorting to tuning transfer function parameters, our proposed system accepts sparse stroke inputs and provides users with intuitive, flexible and effective interaction during volume data exploration and visualization.

[1] M. Ament, D. Weiskopf, and H. Carr, Direct interval volume visualization. IEEE Trans. Vis. Comput. Graph., 16 (6): 1505–1514, 2010.
[2] C. L. Bajaj, V. Pascucci, and D. Schikore, The contour spectrum. In Proceedings of IEEE Visualization 1997, pages 167–174, 1997.
[3] S. Bruckner and M. E. Gröller, Volumeshop: An interactive system for direct volume illustration. In Proceedings of IEEE Visualization 2005, pages 671–678, 2005.
[4] K. Bürger, J. Krüger, and R. Westermann, Direct volume editing. IEEE Trans. Vis. Comput. Graph., 14 (6): 1388–1395, 2008.
[5] C. Correa and K.-L. Ma, Size-based transfer functions: A new volume exploration technique. IEEE Trans. Vis. Comput. Graph., 14 (6): 1380– 1387, 2008.
[6] C. Correa and K.-L. Ma, The occlusion spectrum for volume classification and visualization. IEEE Trans. Vis. Comput. Graph., 15 (6): 1465– 1472, 2009.
[7] C. Correa and K.-L. Ma, Visibility driven transfer functions. In Proceedings of IEEE Pacific Visualization 2009, pages 177–184, 2009.
[8] C. Correa and K.-L. Ma, Visibility histograms and visibility-driven transfer functions. IEEE Trans. Vis. Comput. Graph., 17 (2): 192–204, 2011.
[9] B. Csébfalvi, L. Mroz, H. Hauser, A. König, and E. Gröller, Fast visualization of object contours by non-photorealistic volume rendering. Comput. Graph. Forum, 20 (3): 452–460, 2001.
[10] D. Ebert and P. Rheingans, Volume illustration: non-photorealistic rendering of volume models. In Proceedings of IEEE Visualization 2000, pages 195–202, 2000.
[11] K. Engel, M. Kraus, and T. Ertl, High-quality pre-integrated volume rendering using hardware-accelerated pixel shading. In HWWS '01: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 9–16, 2001.
[12] S. Fang, T. Biddlecome, and M. Tuceryan, Image-based transfer function design for data exploration in volume visualization. InProceedings of IEEE Visualization 1998, pages 319–326, 1998.
[13] S. Geman and D. Geman, Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6 (6): 721 –741, 1984.
[14] H. Guo, H. Xiao, and X. Yuan, Multi-dimensional transfer function design based on flexible dimension projection embedded in parallel coordinates. In Proceedings of IEEE Pacific Visualization 2011, pages 19–26, 2011.
[15] M. Hadwiger, C. Berger, and H. Hauser, High-quality two-level volume rendering of segmented data sets on consumer graphics hardware. InProceedings of IEEE Visualization 2003, pages 301–308, 2003.
[16] T. He, L. Hong, A. E. Kaufman, and H. Pfister, Generation of transfer functions with stochastic search techniques. In Proceedings of IEEE Visualization 1996, pages 227–234, 1996.
[17] T. Igarashi, S. Matsuoka, and H. Tanaka, Teddy: A sketching interface for 3d freeform design. In Proceedings of ACM SIGGRAPH 1999, pages 409–416, 1999.
[18] R. D. Kalnins, L. Markosian, B. J. Meier, M. A. Kowalski, J. C. Lee, P. L. Davidson, M. Webb, J. F. Hughes, and A. Finkelstein, WYSIWYG NPR: drawing strokes directly on 3D models. In Proceedings of ACM SIGGRAPH 2002, pages 755–762, 2002.
[19] G. L. Kindlmann and J. W. Durkin, Semi-automatic generation of transfer functions for direct volume rendering. In VVS '98: Proceedings of IEEE Symposium on Volume visualization, pages 79–86, 1998.
[20] G. L. Kindlmann, R. T. Whitaker, T. Tasdizen, and T. Möller, Curvature-based transfer functions for direct volume rendering: Methods and applications. In Proceedings of IEEE Visualization 2003, pages 513–520, 2003.
[21] P. Kohlmann, S. Bruckner, A. Kanitsar, and M. Groller, Contextual picking of volumetric structures. In Proceedings of IEEE Pacific Visualization Symposium 2009, pages 185–192, 2009.
[22] A. Levin, D. Lischinski, and Y. Weiss, Colorization using optimization. ACM Trans. Graph., 23 (3): 689–694, 2004.
[23] M. Levoy, Display of surfaces from volume data. IEEE Comput. Graph. Appl., 8 (3): 29–37, 1988.
[24] C. Lundström, P. Ljung, and A. Ynnerman, Local histograms for design of transfer functions in direct volume rendering. IEEE Trans. Vis. Com-put. Graph., 12 (6): 1570–1579, 2006.
[25] M. M. Malik, T. Möller, and M. E. Gröller, Feature peeling. In Proceedings of Graphics Interface 2007, pages 273–280, 2007.
[26] J. Marks, B. Andalman, P. A. Beardsley, W. T. Freeman, S. Gibson, J. K. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. M. Shieber, Design galleries: a general approach to setting parameters for computer graphics and animation. In Proceedings of ACM SIGGRAPH 1997, pages 389–400, 1997.
[27] S. Owada, F. Nielsen, and T. Igarashi, Volume catcher. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, pages 111–116, 2005.
[28] D. Patel, M. Haidacher, J.-P. Balabanian, and E. Groller, Moment curves. In Proceedings of IEEE Pacific Visualization Symposium 2009, pages 201–208, 2009.
[29] H. Pfister, W. E. Lorensen, C. L. Bajaj, G. L. Kindlmann, W. J. Schroeder, L. S. Avila, K. Martin, R. MacHiraju, and J. Lee, The transfer function bake-off. IEEE Comput. Graph. Appl., 21 (3): 16–22, 2001.
[30] P. Rautek, S. Bruckner, and E. Gröller, Semantic layers for illustrative volume rendering. IEEE Trans. Vis. Comput. Graph., 13 (6): 1336–1343, 2007.
[31] P. Rautek, S. Bruckner, and M. E. Gröller, Interaction-dependent semantics for illustrative volume rendering. Comput. Graph. Forum, 27 (3): 847– 854, 2008.
[32] C. Rezk-Salama, M. Keller, and P. Kohlmann, High-level user interfaces for transfer function design with semantics. IEEE Trans. Vis. Comput. Graph., 12 (5): 1021–1028, 2006.
[33] T. Ropinski, J.-S. Praßni, F. Steinicke, and K. H. Hinrichs, Stroke-based transfer function design. In Proceedings of IEEE/EG International Symposium on Volume and Point-Based Graphics, pages 41–48, 2008.
[34] P. Sereda, A. V. Bartrolí, I. Serlie, and F. A. Gerritsen, Visualization of boundaries in volumetric data sets using LH histograms. IEEE Trans. Vis. Comput. Graph., 12 (2): 208–218, 2006.
[35] F.-Y. Tzeng, E. B. Lum, and K.-L. Ma, A novel interface for higher-dimensional classification of volume data. In Proceedings of IEEE Visualization 2003, pages 505–512, 2003.
[36] F.-Y. Tzeng, E. B. Lum, and K.-L. Ma, An intelligent system approach to higher-dimensional classification of volume data. IEEE Trans. Vis. Comput. Graph., 11 (3): 273–284, 2005.
[37] Y. Wu and H. Qu, Interactive transfer function design based on editing direct volume rendered images. IEEE Trans. Vis. Comput. Graph., 13 (5): 1027–1040, 2007.
[38] X. Yuan, N. Zhang, M. X. Nguyen, and B. Chen, Volume cutout. The Visual Computer, 21 (8-10): 745–754, 2005.

Index Terms:
Volume rendering, Sketching input, Human-computer interaction, Transfer functions, Feature space.
Citation:
Hanqi Guo, Ningyu Mao, Xiaoru Yuan, "WYSIWYG (What You See is What You Get) Volume Visualization," IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2106-2114, Dec. 2011, doi:10.1109/TVCG.2011.261
Usage of this product signifies your acceptance of the Terms of Use.