The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2011 vol.17)
pp: 2088-2095
S. Williams , Inst. for Data Anal. & Visualization, Univ. of California, Davis, CA, USA
M. Petersen , Los Alamos Nat. Lab., Los Alamos, NM, USA
P.-T Bremer , Lawrence-Livermore Nat. Lab., Livermore, CA, USA
M. Hecht , Los Alamos Nat. Lab., Los Alamos, NM, USA
V. Pascucci , Sci. Comput. & Imaging Inst., Univ. of Utah, Salt Lake City, UT, USA
J. Ahrens , Los Alamos Nat. Lab., Los Alamos, NM, USA
M. Hlawitschka , Univ. Leipzig, Leipzig, Germany
B. Hamann , Inst. for Data Anal. & Visualization, Univ. of California, Davis, CA, USA
ABSTRACT
We consider the problem of extracting discrete two-dimensional vortices from a turbulent flow. In our approach we use a reference model describing the expected physics and geometry of an idealized vortex. The model allows us to derive a novel correlation between the size of the vortex and its strength, measured as the square of its strain minus the square of its vorticity. For vortex detection in real models we use the strength parameter to locate potential vortex cores, then measure the similarity of our ideal analytical vortex and the real vortex core for different strength thresholds. This approach provides a metric for how well a vortex core is modeled by an ideal vortex. Moreover, this provides insight into the problem of choosing the thresholds that identify a vortex. By selecting a target coefficient of determination (i.e., statistical confidence), we determine on a per-vortex basis what threshold of the strength parameter would be required to extract that vortex at the chosen confidence. We validate our approach on real data from a global ocean simulation and derive from it a map of expected vortex strengths over the global ocean.
INDEX TERMS
Feature extraction, Information analysis, Data visualization, Data mining, Data models, Atmospheric modeling, statistical data analysis., Vortex extraction, feature extraction
CITATION
S. Williams, M. Petersen, P.-T Bremer, M. Hecht, V. Pascucci, J. Ahrens, M. Hlawitschka, B. Hamann, "Adaptive Extraction and Quantification of Geophysical Vortices", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 12, pp. 2088-2095, Dec. 2011, doi:10.1109/TVCG.2011.162
REFERENCES
[1] D. C. Banks and B. A. Singer, Vortex tubes in turbulent flows: identification, representation, reconstruction. In VIS '94: Proceedings of the conference on Visualization '94, pages 132–139, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.
[2] R. A. Crawfis and N. Max, Texture splats for 3d scalar and vector field visualization. In Proceedings of the 4th conference on Visualization '93, VIS '93, pages 261–266, Washington, DC, USA, 1993. IEEE Computer Society.
[3] W. K. Dewar and P. D. Killworth, On the Stability of Oceanic Rings. Journal of Physical Oceanography, 25: 1467–1487, June 1995.
[4] J. C. R. Hunt, A. A. Wray, and P. Moin, Eddies, streams, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases, 2, pages 193–208, Dec. 1988.
[5] M. Jiang, R. Machiraju, and D. Thompson, A novel approach to vortex core region detection. In Proceedings of the symposium on Data Visualisation 2002, VISSYM '02, pages 217–ff, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.
[6] Jinhee Jeong and F. Hussain, On the identification of a vortex. Journal of Fluid Mechanics, 285: 69–94,25 February 1995.
[7] P. K. Kundu, Fluid Mechanics. Academic Press, 1990.
[8] R. Laramee, H. Hauser, L. Zhao, and F. Post, Topology-based flow visualization, the state of the art. In H. Hauser, H. Hagen, and H. Theisel editors, Topology-based Methods in Visualization,, Mathematics and Visualization, pages 1-19. Springer Berlin Heidelberg, 2007. 10.1007/978-3-540-70823-0_1.
[9] K. J. Mallen, M. T. Montgomery, and B. Wang, Reexamining the Near-Core Radial Structure of the Tropical Cyclone Primary Circulation: Implications for Vortex Resiliency. Journal of Atmospheric Sciences, 62: 408-425, Feb. 2005.
[10] D. J. McGillicuddy, Jr, L. A. Anderson, S. C. Doney, and M. E. Maltrud, Eddy-driven sources and sinks of nutrients in the upper ocean: Results from a 0.1 degrees resolution model of the North Atlantic. Global Bio-geochemical Cycles, 17 (2): 1035-, 2003.
[11] A. Okubo, Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Research and Oceanographic Abstracts, 17 (3): 445-454, 1970.
[12] C. Petz, J. Kasten, S. Prohaska, and H.-C. Hege, Hierarchical vortex regions in swirling flow. Computer Graphics Forum, 28 (3): 863-870, 2009.
[13] S. C. Riser, W. B. Owens, H. T. Rossby, and C. C. Ebbesmeyer, The Structure, Dynamics, and Origin of a Small-Scale Lens of Water in the Western North Atlantic Thermocline. Journal of Physical Oceanography, 16: 572-590, Mar. 1986.
[14] D. Schneider, A. Wiebel, H. Carr, M. Hlawitschka, and G. Scheuermann, Interactive comparison of scalar fields based on largest contours with applications to flow visualization. Visualization and Computer Graphics, IEEE Transactions on, 14 (6): 1475 -1482, nov-dec. 2008.
[15] D. Silver and X. Wang, Tracking and visualizing turbulent 3d features. Visualization and Computer Graphics, IEEE Transactions on, 3 (2): 129 -141, apr. 1997.
[16] R. D. Smith and P. Gent, Reference manual of the Parallel Ocean Program (POP). Los Alamos National Laboratory report LA-UR-02-2484, Los Alamos National Laboratory, Los Alamos, NM, 2002.
[17] V. Sood, B. John, R. Balasubramanian, and A. Tandon, Segmentation and tracking of mesoscale eddies in numeric ocean models. In Image Processing, 2005. ICIP 2005. IEEE International Conference on, volume 3, pages III - 469-72, September 2005.
[18] X. Tricoche and C. Garth, Topological methods for visualizing vortical flows. In G. Farin, H.-C. Hege, D. Hoffman, C. R. Johnson, K. Polthier, and M. Rumpf editors, , Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, Mathematics and Visualization, pages 89-107. Springer Berlin Heidelberg, 2009. 10.1007/b 106657.5.
[19] J. Villasenor and A. Vincent, An algorithm for space recognition and time tracking of vorticity tubes in turbulence. CVGIP: Image Understanding, 55 (1): 27 - 35, 1992.
944 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool