
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Jens Kasten, Jan Reininghaus, Ingrid Hotz, HansChristian Hege, "TwoDimensional TimeDependent Vortex Regions Based on the Acceleration Magnitude," IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 20802087, Dec., 2011.  
BibTex  x  
@article{ 10.1109/TVCG.2011.249, author = {Jens Kasten and Jan Reininghaus and Ingrid Hotz and HansChristian Hege}, title = {TwoDimensional TimeDependent Vortex Regions Based on the Acceleration Magnitude}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, number = {12}, issn = {10772626}, year = {2011}, pages = {20802087}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.249}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  TwoDimensional TimeDependent Vortex Regions Based on the Acceleration Magnitude IS  12 SN  10772626 SP2080 EP2087 EPD  20802087 A1  Jens Kasten, A1  Jan Reininghaus, A1  Ingrid Hotz, A1  HansChristian Hege, PY  2011 KW  Vortex regions KW  timedependent flow fields KW  feature extraction. VL  17 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] D. C. Banks and B. A. Singer, A predictorcorrector technique for visualizing unsteady flow. IEEE Transactions on Visualization and Computer Graphics, 1 (2): 151–163, 1995.
[2] D. Bauer and R. Peikert, Vortex tracking in scalespace. In D. Ebert, P. Brunet, and I. Navazo, editors, VisSym02 Joint Eurographics  IEEE TCVG Symposium on Visualization, pages 233–240. Eurographics Association, 2002.
[3] D. Bauer, R. Peikert, M. Sato, and M. Sick, A case study in selective visualization of unsteady 3d flow. In VIS '02: Proceedings of the Conference on Visualization '02, pages 525–528, Washington, DC, USA, 2002. IEEE Computer Society.
[4] E. Caraballo, M. Samimy, and J. DeBonis., Low dimensional modeling of flow for closedloop flow control. In AIAA Paper, volume 59, 41st AIAA Aerospace Science Meeting, January 69, 2003, Reno, NV, USA.
[5] R. Fuchs, J. Kemmler, B. Schindler, J. Waser, F. Sadlo, H. Hauser, and R. Peikert, Toward a Lagrangian vector field topology. Computer Graphics Forum, 29 (3): 1163–1172, June 2010.
[6] C. Garth, X. Tricoche, T. Salzbrunn, T. Bobach, and G. Scheuermann, Surface Techniques for Vortex Visualization. In O. Deussen, C. Hansen, D. Keim, and D. Saupe editors, Symposium on Visualization, pages 155– 164, Konstanz, Germany, 2004. Eurographics Association.
[7] C. Garth, X. Tricoche, and G. Scheuermann, Tracking of vector field singularities in unstructured 3d timedependent datasets. In In Proc. IEEE Visualization 2004, pages 329–336, 2004.
[8] G. Haller, Distinguished material surfaces and coherent structures in threedimensional fluid flows. Physica D, 149 (4): 248–277, 2001.
[9] G. Haller, An objective definition of a vortex. Journal of Fluid Mechanics, 525: 1–26, 2005.
[10] J. Hunt, Vorticity and vortex dynamics in complex turbulent flows. Trans. Can. Soc. Mech. Eng., 11: 21–35, 1987.
[11] M. JankunKelly, M. Jiang, D. Thompson, and R. Machiraju, Vortex visualization for practical engineering applications. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 957–964, 2006.
[12] J. Jeong and F. Hussain, On the identification of a vortex. Journal of Fluid Mechanics, 285: 69–94, 1995.
[13] J. Kasten, I. Hotz, B. Noack, and H.C. Hege, On the extraction of longliving features in unsteady fluid flows. In V. P. et al., editor, Topological Methods in Data Analysis and Visualization. Theory, Algorithms, and Applications., Mathematics and Visualization, pages 115–126. Springer, 2011.
[14] T. S. Lundgren, Strained spiral vortex model for turbulent fine structure. Physics of Fluids, 25 (12): 2193–2203, 1982.
[15] B. Noack, I. Mezi, G. Tadmor, and A. Banaszuk, Optimal mixing in recirculation zones. Physics of Fluids, 16 (4): 867–888, 2004.
[16] B. R. Noack, M. Schlegel, B. Ahlborn, G. Mutschke, M. Morzyski, P. Comte, and G. Tadmor, A finitetime thermodynamics of unsteady fluid flows. Journal NonEquilibrium Thermodynamics, 33 (2): 103–148, 2008.
[17] C. Petz, J. Kasten, S. Prohaska, and H.C. Hege, Hierarchical vortex regions in swirling flow. Computer Graphics Forum, 28 (3): 863–870, 2009.
[18] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel, K. Matkovic, and H. Hauser, On the way towards topologybased visualization of unsteady flow  the state of the art. In EuroGraphics 2010 State of the Art Reports (STARs), pages 137–154, 2010.
[19] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch, The state of the art in flow visualisation: Feature extraction and tracking. Computer Graphics Forum, 22 (4): 775–792, 2003.
[20] F. Reinders, I. Sadarjoen, B. Vrolijk, and F. Post, Vortex tracking and visualisation in a flow past a tapered cylinder. Computer Graphics Forum, 21 (4): 675–682, 11 2002.
[21] J. Reininghaus, D. Günther, I. Hotz, S. Prohaska, and H.C. Hege, TADD: A computational framework for data analysis using discrete Morse theory. In Mathematical Software – ICMS 2010, volume 6327 of Lecture Notes in Computer Science, pages 198–208. Springer, 2010.
[22] J. Reininghaus, J. Kasten, T. Weinkauf, and I. Hotz, Efficient computation of combinatorial feature flow fields. IEEE Transactions on Visualization and Computer Graphics, 2011 (to appear).
[23] V. RomKedar, A. Leonard, and S. Wiggins, An analytical study of transport, mixing and chaos in an unsteady vortical flow. Journal of Fluid Mechanics, 214: 347–394, 1990.
[24] I. A. Sadarjoen and F. H. Post, Geometric methods for vortex extraction. In Joint EurographicsIEEE TVCG Symposium on Visualization, pages 53–62, 1999.
[25] D. Schneider, A. Wiebel, H. Carr, M. Hlawitschka, and G. Scheuermann., Interactive comparison of scalar fields based on largest contours with applications to flow visualization. IEEE Trans Vis Comput Graph, 14 (6): 1475–1482, 2008.
[26] S. C. Shadden, A Dynamical Systems Approach to Unsteady Systems. PhD thesis, California Institute of Technology, Pasadena CA, 2006.
[27] S. Stegmaier, U. Rist, and T. Ertl, Opening the Can of Worms: An Exploration Tool for Vortical Flows. In C. Silva, and E. Gröller, and H. Rushmeier editor, Proceedings of IEEE Visualization '05, pages 463– 470. IEEE, 2005.
[28] P. Tabeling, Twodimensional turbulence: a physicist approach. Physics Reports, 362 (1): 1 – 62, 2002.
[29] H. Theisel, and H.P. Seidel, Feature flow fields. In VisSym '03: Proceedings of the Symposium on Data Visualization 2003, pages 141–148, AirelaVille, Switzerland, 2003. Eurographics Association.
[30] A. Tikhonova, C. D. Correa, and K.L. Ma, An exploratory technique for coherent visualization of timevarying volume data. Computer Graphics Forum, 29 (3): 783–792, 2010.
[31] X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen, Topology tracking for the visualization of timedependent twodimensional flows. Computer & Graphics, 26: 249–257, 2002.
[32] M. Wilczek, O. Kamps, and R. Friedrich, Lagrangian investigation of twodimensional decaying turbulence. Physica D: Nonlinear Phenomena, 237 (1417): 2090 – 2094, 2008.
[33] C. H. K. Williamson, Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics, 28: 477–539, 1996.