
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Christopher Koehler, Thomas Wischgoll, Haibo Dong, Zachary Gaston, "Vortex Visualization in Ultra Low Reynolds Number Insect Flight," IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 20712079, Dec., 2011.  
BibTex  x  
@article{ 10.1109/TVCG.2011.260, author = {Christopher Koehler and Thomas Wischgoll and Haibo Dong and Zachary Gaston}, title = {Vortex Visualization in Ultra Low Reynolds Number Insect Flight}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, number = {12}, issn = {10772626}, year = {2011}, pages = {20712079}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.260}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Vortex Visualization in Ultra Low Reynolds Number Insect Flight IS  12 SN  10772626 SP2071 EP2079 EPD  20712079 A1  Christopher Koehler, A1  Thomas Wischgoll, A1  Haibo Dong, A1  Zachary Gaston, PY  2011 KW  Flow visualization KW  flowing seed points KW  streak lines KW  streamlines KW  insect flight KW  vortex visualization KW  unsteady flow. VL  17 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] W. Shyy, H. Aono, S. K. Chimakurthi, P. Trizila, C. K. Kang, C. E. S. Cesnik, and H. Liu, “Recent progress in flapping wing aerodynamics and aeroelasticity,” Prog. Aerospace Sci., vol. 46, pp. 284–327, October, 2010.
[2] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen, “Over Two Decades of IntegrationBased, Geometric Flow Visualization,” Computer Graphics Forum, vol. 29, pp. 1807–1829, 2010.
[3] A. Wiebel, X. Tricoche, D. Schneider, H. Janicke, and G. Scheuermann, “Generalized Streak Lines: Analysis and Visualization of Boundary Induced Vortices,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, pp. 1735–1742, 2007.
[4] M. Jiang, R. Machiraju, and D. Thompson, “Detection and visualization of vortices,” In The Visualization Handbook, 2005, pp. 295–309.
[5] E. C. Polhamus, “Predictions of VortexLift Characteristics by a LeadingEdge Suction Analogy,” Journal of Aircraft, vol. 8, pp. 193–199, April, 1971.
[6] M. H. Dickinson and K. G. Gotz, “Unsteady Aerodynamic Performance of Model Wings at Low Reynolds Numbers,” Journal of Experimental Biology, vol. 174, pp. 45–64, January, 1993.
[7] S. P. Sane, “The aerodynamics of insect flight,” Journal of Experimental Biology, vol. 206, pp. 4191–4208, December, 2003.
[8] C. P. Ellington van den Berg, A. P. Willmott, and A. L. R. Thomas, “Leadingedge vortices in insect flight,” Nature, vol. 384, pp. 626–630, December, 1996.
[9] A. P. Willmott, C. P. Ellington, and A. L. R. Thomas, “Flow visualization and unsteady aerodynamics in the Flight of the hawkmoth, Manduca sexta,” Philosophical Transactions: Biological Sciences, vol. 352, pp. 303–316, March, 1997.
[10] M. H. Dickinson, F. Lehmann, and S. P. Sane, “Wing Rotation and the Aerodynamic Basis of Insect Flight,” Science, vol. 284, pp. 1954–1960, June, 1999.
[11] G. V. Lauder, “Aerodynamics: Flight of the robofly,” Nature, vol. 412, pp. 688–689, August, 2001.
[12] B. Jobard and W. Lefer, “Unsteady Flow Visualization by Animating EvenlySpaced Streamlines,” Computer Graphics Forum, vol. 19, pp. 31–39, 2000.
[13] A. Wiebel and G. Scheuermann, “Eyelet particle tracing  steady visualization of unsteady flow,” In IEEE Visualization '05, 2005, pp. 607–614.
[14] A. Helgeland and T. Elboth, “HighQuality and Interactive Animations of 3D TimeVarying Vector Fields,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, pp. 1535–1546, 2006.
[15] N. Cuntz, A. Pritzkau, and A. Kolb, “TimeAdaptive Lines for the Interactive Visualization of Unsteady Flow Data Sets,” Computer Graphics Forum, vol. 28, pp. 2165–2175, 2009.
[16] T. Weinkauf and H. Theisel, “Streak Lines as Tangent Curves of a Derived Vector Field,” IEEE Transactions on Visualization and Computer Graphics, vol. 16, pp. 1225–1234, 2010.
[17] C. Garth, H. Krishnan, X. Tricoche, T. Bobach, and K. I. Joy, “Generation of Accurate Integral Surfaces in TimeDependent Vector Fields,” IEEE Transactions on Visualization and Computer Graphics, vol. 14, pp. 1404–1411, 2008.
[18] W. von Funck, T. Weinkauf, H. Theisel, and H. Seidel, “Smoke Surfaces: An Interactive Flow Visualization Technique Inspired by RealWorld Flow Experiments,” IEEE Transactions on Visualization and Computer Graphics, vol. 14, pp. 1396–1403, NovemberDecember, 2008.
[19] T. McLoughlin, R. S. Laramee, and E. Zhang, “Easy integral surfaces: A fast, quadbased stream and path surface algorithm,” In CGI '09: Computer Graphics International, Victoria, British Columbia, Canada, 2009, pp. 73–82.
[20] H. Krishnan, C. Garth, and K. I. Joy, “Time and Streak Surfaces for Flow Visualization in Large TimeVarying Data Sets,” IEEE Transactions on Visualization and Computer Graphics, vol. 15, pp. 1267–1274, December, 2009.
[21] S. Born, A. Wiebel, J. Friedrich, G. Scheuermann, and D. Bartz, “Illustrative Stream Surfaces,” IEEE Transactions on Visualization and Computer Graphics, vol. 16, pp. 1329–1338, 2010.
[22] F. Ferstl, K. Burger, H. Theisel, and R. Westermann, “Interactive Separating Streak Surfaces,” IEEE Transactions on Visualization and Computer Graphics, vol. 16, pp. 1569–1577, 2010.
[23] D. Sujudi and R. Haimes, “Identification of swirling flow in 3D vector fields,” In AIAA 12th Computational Fluid Dynamics Conference, 1995, pp.1715.
[24] M. Roth and R. Peikert, “A higherorder method for finding vortex core lines,” In IEEE Visualization '98, Research Triangle Park, North Carolina, United States, 1998, pp. 143–150.
[25] J. Sahner, T. Weinkauf, and H. C. Hege, “Galilean invariant extraction and iconic representation of vortex core lines,” In EuroVis '05, 2005.
[26] T. Weinkauf, J. Sahner, H. Theisel, and H. C. Hege, “Cores of Swirling Particle Motion in Unsteady Flows,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, pp. 1759–1766, 2007.
[27] M. Jiang, R. Machiraju, and D. Thompson, “Geometric verification of swirling features in flow fields,” In IEEE Visualization '02, 2002, pp. 307–314.
[28] J. Jeong and F. Hussain, “On the identification of a vortex,” Journal of Fluid Mechanics, vol. 285, pp. 69–94, 1995.
[29] M. Jiang, R. MacHiraju, and D. Thompson, “A novel approach to vortex core region detection,” In Proceedings of the Symposium on Data Visualisation 2002, Barcelona, Spain, 2002, pp. 217.
[30] G. Haller, “An objective definition of a vortex,” Journal of Fluid Mechanics, vol. 525, pp. 1–26, 2005.
[31] S. Stegmaier, U. Rist, and T. Ertl, “Opening the can of worms: An exploration tool for vortical flows,” In IEEE Visualization '05, 2005, pp. 463–470.
[32] X. Tricoche, C. Garth, G. Kindlmann, E. Deines, G. Scheuermann, M. Ruetten, and C. Hansen, “Visualization of intricate flow structures for vortex breakdown analysis,” In IEEE Visualization '04, 2004, pp. 187–194.
[33] R. Peikert and F. Sadlo, “Visualization methods for vortex rings and vortex breakdown bubbles,” In EuroVis Proceedings, 2007, pp. 211–218.
[34] M. JankunKelly, J. Ming, D. Thompson, and R. MacHiraju, “Vortex Visualization for Practical Engineering Applications,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, pp. 957–964, September, 2006.
[35] F. Sadlo, R. Peikert, and M. Sick, “Visualization Tools for Vorticity Transport Analysis in Incompressible Flow,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, pp. 949–956, 2006.
[36] R. S. Laramee, C. Garth, H. Doleisch, J. Schneider, H. Hauser, and H. Hagen, “Visual analysis and exploration of fluid flow in a cooling jacket,” In IEEE Visualization '05, 2005, pp. 623–630.
[37] D. Bauer, R. Peikert, M. Sato, and M. Sick, “A case study in selective visualization of unsteady 3D flow,” In VIS '02: Proceedings of the Conference on Visualization '02, Boston, Massachusetts, 2002, pp. 525–528.
[38] Q. You, S. Fang, and L. Zhu, “Visualizing vortex shedding of an elastic plate interacting with a 3D viscous flow,” In CIT '09: Proceedings of the 2009 Ninth IEEE International Conference on Computer and Information Technology, 2009, pp. 312–317.
[39] I. V. Pivkin, E. Hueso, R. Weinstein, D. H. Laidlaw, S. Swartz, and G. E. Karniadakis, “Simulation and visualization of air flow around bat wings during flight,” In Proceedings of the International Conference on Computational Science, 2002.
[40] R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, and A. von Loebbecke, “A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries,” Journal of Computational Physics, vol. 227, pp. 4825–4852, May, 2008.
[41] H. Dong, R. Mittal, and F. M. Najjar, “Wake topology and hydrodynamic performance of low aspectratio flapping foils,” Journal of Fluid Mechanics, vol. 566, pp. 309–343, November, 2006.
[42] R. Haimes and D. Kenwright, “On the velocity gradient tensor and fluid feature extraction,” In AIAA 14th Computational Fluid Dynamics Conference, 1999.
[43] V. Verma, D. Kao, and A. Pang, “A flowguided streamline seeding strategy,” In IEEE Visualization '00, Salt Lake City, Utah, United States, 2000, pp. 163–170.
[44] X. Ye, D. Kao, and A. Pang, “Strategy for seeding 3D streamlines,” In IEEE Visualization '05, 2005, pp. 471–478.
[45] C. Yuan, J. D. Cohen, and J. H. Krolik, “SimilarityGuided Streamline Placement with Error Evaluation,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, pp. 1448–1455, 2007.
[46] L. Li and H. Shen, “Image Based Streamline Generation and Rendering,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, pp. 630–640, MayJune, 2007.
[47] S. Marchesin, C. Chen, C. Ho, and K. Ma, “ViewDependent Streamlines for 3D Vector Fields,” IEEE Transactions on Visualization and Computer Graphics, vol. 16, pp. 1578–1586, November, 2010.