The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2011 vol.17)
pp: 2063-2070
Paolo Angelelli , University of Bergen
Helwig Hauser , University of Bergen
ABSTRACT
Flows through tubular structures are common in many fields, including blood flow in medicine and tubular fluid flows in engineering. The analysis of such flows is often done with a strong reference to the main flow direction along the tubular boundary. In this paper we present an approach for straightening the visualization of tubular flow. By aligning the main reference direction of the flow, i.e., the center line of the bounding tubular structure, with one axis of the screen, we are able to natively juxtapose (1.) different visualizations of the same flow, either utilizing different flow visualization techniques, or by varying parameters of a chosen approach such as the choice of seeding locations for integration-based flow visualization, (2.) the different time steps of a time-dependent flow, (3.) different projections around the center line , and (4.) quantitative flow visualizations in immediate spatial relation to the more qualitative classical flow visualization. We describe how to utilize this approach for an informative interactive visual analysis. We demonstrate the potential of our approach by visualizing two datasets from two different fields: an arterial blood flow measurement and a tubular gas flow simulation from the automotive industry.
INDEX TERMS
Flow Visualization, Data Reformation, Comparative Visualization.
CITATION
Paolo Angelelli, Helwig Hauser, "Straightening Tubular Flow for Side-by-Side Visualization", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 12, pp. 2063-2070, Dec. 2011, doi:10.1109/TVCG.2011.235
REFERENCES
[1] J. Bock, A. Frydrychowicz, A. Stalder, T. Bley, H. Burkhardt, J. Hennig, and M. Markl, 4D phase contrast MRI at 3 T: Effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magnetic Resonance in Medicine, 63 (2): 330–338, 2010.
[2] M. Borkin, S. Melchionna, C. Feldman, E. Kaxiras, and H. Pfister, Multidimensional visualization of hemodynamic data. Proceedings of IEEE Visualization Conference, Atlantic City, USA, October 2009.
[3] M. Chen, D. Silver, A. Winter, V. Singh, and N. Cornea, Spatial transfer functions: a unified approach to specifying deformation in volume modeling and animation. In Proceedings of the 2003 Eurographics/IEEE TVCG Workshop on Volume graphics, pages 35–44. ACM, 2003.
[4] N. Cornea, D. Silver, and P. Min, Curve-skeleton properties, applications, and algorithms. Visualization and Computer Graphics, IEEE Transactions on, 13 (3): 530–548, 2007.
[5] C. Correa, D. Silver, and M. Chen, Discontinuous displacement mapping for volume graphics. In Proceedings of Volume Graphics, volume 6, pages 9–16, 2006.
[6] H. Doleisch, SIMVIS: interactive visual analysis of large and time-dependent 3D simulation data. In Proceedings of the 39th conference on Winter simulation, pages 712–720. IEEE Press, 2007.
[7] F. Frenet, Sur les courbes a double courbure. Journal des Mathematiques Pures et Appliquees, 17: 437–447, 1852.
[8] R. Fuchs and H. Hauser, Visualization of Multi-Variate Scientific Data. In Computer Graphics Forum, volume 28, pages 1670–1690. Wiley Online Library, 2009.
[9] C. Jones and K. Ma, Visualizing Flow Trajectories Using Locality-based Rendering and Warped Curve Plots. Visualization and Computer Graphics, IEEE Transactions on, 16 (6): 1587–1594, 2010.
[10] A. Kanitsar, R. Wegenkittl, D. Fleischmann, and M. Gröller, Advanced curved planar reformation: Flattening of vascular structures. Visualization and Computer Graphics, IEEE Transactions on, pages 43–50, 2003.
[11] R. Kirby, D. Keefe, and D. Laidlaw, Painting and visualization. The Visualization Handbook, pages 873–891, 2005.
[12] O. Lampe, C. Correa, K. Ma, and H. Hauser, Curve-centric volume reformation for comparative visualization. IEEE Transactions on Visualization and Computer Graphics, pages 1235–1242, 2009.
[13] R. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. Post, and D. Weiskopf, The State of the Art in Flow Visualization: Dense and Texture-Based Techniques. In Computer Graphics Forum, volume 23, pages 203–221. Wiley Online Library, 2004.
[14] R. Laramee, H. Hauser, L. Zhao, and F. Post, Topology-based flow visualization, the state of the art. Topology-based Methods in Visualization, pages 1–19, 2007.
[15] T. C. Lee, R. L. Kashyap, and C. N. Chu, Building skeleton models via 3d medial surface/axis thinning algorithms. CVGIP: Graph. Models Image Process., 56: 462–478, November 1994.
[16] D. Lesage, E. Angelini, I. Bloch, and G. Funka-Lea, A review of 3d vessel lumen segmentation techniques: Models, features and extraction schemes. Medical Image Analysis, 13 (6): 819–845, 2009.
[17] A. Lez, A. Zajic, K. Matkovic, A. Pobitzer, M. Mayer, and H. Hauser, Interactive exploration and analysis of pathlines in flow data. In Proc. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG 2011), pages 17–24, 2011.
[18] M. Markl, P. Kilner, and T. Ebbers, Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 13 (1): 7, 2011.
[19] T. McLoughlin, R. Laramee, R. Peikert, F. Post, and M. Chen, Over Two Decades of Integration-Based, Geometric Flow Visualization. In Computer Graphics Forum, volume 29, pages 1807–1829. Wiley Online Library, 2010.
[20] S. Meier, A. Hennemuth, O. Friman, J. Bock, M. Markl, and T. Preusser, Non-invasive 4D Blood Flow and Pressure Quantification in Central Blood Vessels via PC-MRI. Computing in Cardiology, 37: 903–906, 2009.
[21] T. Nobrega, D. Carvalho, and A. von Wangenheim, Simplified simulation and visualization of tubular flows with approximate centerline generation. In Computer-Based Medical Systems, pages 1–7. IEEE, 2009.
[22] H. Pagendarm and F. Post, Studies in comparative visualization of flow features. Scientific Visualization, Overviews, Methodologies, and Techniques, pages 211–227, 1997.
[23] Z. Peng and R. Laramee, Higher Dimensional Vector Field Visualization: A Survey. Theory and Practice of Computer Graphics (TPCG09), pages 149–163, 2009.
[24] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel, K. Matkovic, and H. Hauser, On the way towards topology-based visualization of unsteady flow - the state of the art. In EuroGraphics 2010 State of the Art Reports (STARs), pages 137–154, 2010.
[25] F. Post, B. Vrolijk, H. Hauser, R. Laramee, and H. Doleisch, Feature extraction and visualization of flow fields. Eurographics 2002 State-of-the-Art Reports, pages 69–100, 2002.
[26] F. Post, B. Vrolijk, H. Hauser, R. Laramee, and H. Doleisch, The state of the art in flow visualisation: Feature extraction and tracking. In Computer Graphics Forum, volume 22, pages 775–792. Wiley Online Library, 2003.
[27] T. Ropinski, S. Hermann, R. Reich, M. Schäfers, and K. Hinrichs, Multi-modal vessel visualization of mouse aorta PET/CT scans. IEEE Transactions on Visualization and Computer Graphics, pages 1515–1522, 2009.
[28] M. Roth and R. Peikert, Flow visualization for turbomachinery design. In Proceedings of the 7th conference on Visualization'96, pages 381–384. IEEE Computer Society Press, 1996.
[29] A. Sadarjoen, T. Van Walsum, A. Hin, and F. Post, Particle tracing algorithms for 3D curvilinear grids. Scientific Visualization, Overviews, Methodologies, and Techniques, pages 311–335, 1997.
[30] T. Salzbrunn, H. Jänicke, T. Wischgoll, and G. Scheuermann, The state of the art in flow visualization: Partition-based techniques. Simulation and Visualization 2008 Proceedings, pages 75–92, 2008.
[31] R. van Pelt, J. Bescós, M. Breeuwer, R. Clough, M. Gröller, B. ter Haar Romenij, and A. Vilanova, Exploration of 4D MRI Blood Flow using Stylistic Visualization. Visualization and Computer Graphics, IEEE Transactions on, 16 (6): 1339–1347, 2010.
[32] V. Verma and A. Pang, Comparative flow visualization. Visualization and Computer Graphics, IEEE Transactions on, 10 (6): 609–624, 2004.
[33] A. Vilanova, E. Gröller, and A. König, Cylindrical approximation of tubular organs for virtual endoscopy. In Proceedings of Computer Graphics and Imaging, volume 11, pages 283–289, 2000.
[34] A. Vilanova, R. Wegenkittl, A. Konig, and E. Gröller, Nonlinear virtual colon unfolding. Visualization and Computer Graphics, IEEE Transactions on, pages 411–418, 2001.
[35] T. Vrtovec, B. Likar, and F. Pernuš, Automated curved planar reformation of 3D spine images. Physics in medicine and biology, 50: 4527, 2005.
32 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool