Subscribe

Issue No.12 - Dec. (2011 vol.17)

pp: 2045-2052

Jan Reininghaus , Zuse Institute Berlin, Germany

Natallia Kotava , University of Kaiserslautern, Germany

David Guenther , Zuse Institute Berlin, Germany

Jens Kasten , Zuse Institute Berlin, Germany

Hans Hagen , University of Kaiserslautern, Germany

Ingrid Hotz , Zuse Institute Berlin, Germany

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.159

ABSTRACT

This paper introduces a novel importance measure for critical points in 2D scalar fields. This measure is based on a combination of the deep structure of the scale space with the well-known concept of homological persistence. We enhance the noise robust persistence measure by implicitly taking the hill-, ridge- and outlier-like spatial extent of maxima and minima into account. This allows for the distinction between different types of extrema based on their persistence at multiple scales. Our importance measure can be computed efficiently in an out-of-core setting. To demonstrate the practical relevance of our method we apply it to a synthetic and a real-world data set and evaluate its performance and scalability.

INDEX TERMS

Scale space, persistence, discrete Morse theory.

CITATION

Jan Reininghaus, Natallia Kotava, David Guenther, Jens Kasten, Hans Hagen, Ingrid Hotz, "A Scale Space Based Persistence Measure for Critical Points in 2D Scalar Fields",

*IEEE Transactions on Visualization & Computer Graphics*, vol.17, no. 12, pp. 2045-2052, Dec. 2011, doi:10.1109/TVCG.2011.159REFERENCES