The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2011 vol.17)
pp: 2035-2044
Dilip Mathew Thomas , Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India
Vijay Natarajan , Department of Computer Science and Automation, Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
ABSTRACT
Study of symmetric or repeating patterns in scalar fields is important in scientific data analysis because it gives deep insights into the properties of the underlying phenomenon. Though geometric symmetry has been well studied within areas like shape processing, identifying symmetry in scalar fields has remained largely unexplored due to the high computational cost of the associated algorithms. We propose a computationally efficient algorithm for detecting symmetric patterns in a scalar field distribution by analysing the topology of level sets of the scalar field. Our algorithm computes the contour tree of a given scalar field and identifies subtrees that are similar. We define a robust similarity measure for comparing subtrees of the contour tree and use it to group similar subtrees together. Regions of the domain corresponding to subtrees that belong to a common group are extracted and reported to be symmetric. Identifying symmetry in scalar fields finds applications in visualization, data exploration, and feature detection. We describe two applications in detail: symmetry-aware transfer function design and symmetry-aware isosurface extraction.
INDEX TERMS
Scalar field symmetry, contour tree, similarity measure, persistence, isosurface extraction, transfer function design.
CITATION
Dilip Mathew Thomas, Vijay Natarajan, "Symmetry in Scalar Field Topology", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 12, pp. 2035-2044, Dec. 2011, doi:10.1109/TVCG.2011.236
REFERENCES
[1] M. J. Atallah, On symmetry detection. IEEE Trans. Computers, 34 (7): 663–666, 1985.
[2] A. Berner, M. Bokeloh, M. Wand, A. Schilling, and H.-P. Seidel, A graph-based approach to symmetry detection. In Proc. Symposium on Volume and Point-Based Graphics, pages 1–8, 2008.
[3] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno, Reeb graphs for shape analysis and applications. Theor. Comput. Sci., 392 (1-3): 5–22, 2008.
[4] S. Biasotti and S. Marini, Sub-part correspondence using structure and geometry. In Proc. Eurographics Italian Chapter Conference, pages 23– 28, 2006.
[5] S. Biasotti, S. Marini, M. Spagnuolo, and B. Falcidieno, Sub-part correspondence by structural descriptors of 3d shapes. Computer-Aided Design, 38 (9): 1002–1019, 2006.
[6] P. Braß and C. Knauer, Testing congruence and symmetry for general 3-dimensional objects. Comput. Geom., 27 (1): 3–11, 2004.
[7] P.-T. Bremer, G. H. Weber, J. Tierny, V. Pascucci, M. S. Day, and J. B. Bell, A topological framework for the interactive exploration of large scale turbulent combustion. In Proc. IEEE International Conference on e-Science, pages 247–254, 2009.
[8] A. M. Bronstein, M. M. Bronstein, and R. Kimmel, Topology-invariant similarity of nonrigid shapes. International Journal of Computer Vision, 81 (3): 281–301, 2009.
[9] S. Bruckner and T. Möller, Isosurface similarity maps. Comput. Graph. Forum, 29 (3): 773–782, 2010.
[10] H. Carr and J. Snoeyink, Path seeds and flexible isosurfaces using topology for exploratory visualization. In Proc. Symposium on Data visualisation, pages 49–58, 2003.
[11] H. Carr, J. Snoeyink, and M. van de Panne, Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree. Comput. Geom., 43 (1): 42–58, 2010.
[12] A. D. Collins, A. Zomorodian, G. Carlsson, and L. J. Guibas, A barcode shape descriptor for curve point cloud data. Computers & Graphics, 28 (6): 881–894, 2004.
[13] H. Doraiswamy and V. Natarajan, Output-sensitive construction of reeb graphs. IEEE Trans. Vis. Comput. Graph., 99(PrePrints), 2011.
[14] H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological persistence and simplification. Discrete & Computational Geometry, 28 (4): 511–533, 2002.
[15] D. Ghosh, N. Amenta, and M. M. Kazhdan, Closed-form blending of local symmetries. Comput. Graph. Forum, 29 (5): 1681–1688, 2010.
[16] A. Golovinskiy, J. Podolak, and T. A. Funkhouser, Symmetry-aware mesh processing. In Proc. IMA Conference on the Mathematics of Surfaces, pages 170–188, 2009.
[17] W. Harvey and Y. Wang, Topological landscape ensembles for visualization of scalar-valued functions. Comput. Graph. Forum, 29 (3): 993–1002, 2010.
[18] M. Hilaga, Y. Shinagawa, T. Komura, and T. L. Kunii, Topology matching for fully automatic similarity estimation of 3d shapes. In SIGGRAPH, pages 203–212, 2001.
[19] Y. Hong and H.-W. Shen, Parallel reflective symmetry transformation for volume data. Computers & Graphics, 32 (1): 41–54, 2008.
[20] X. Jiang and H. Bunke, Determination of the symmetries of polyhedra and an application to object recognition. In Workshop on Computational Geometry, pages 113–121, 1991.
[21] G. Johansson, K. Museth, and H. Carr, Flexible and topologically localized segmentation. In EuroVis, pages 179–186, 2007.
[22] M. M. Kazhdan, B. Chazelle, D. P. Dobkin, T. A. Funkhouser, and S. Rusinkiewicz, A reflective symmetry descriptor for 3d models. Al-gorithmica, 38 (1): 201–225, 2003.
[23] M. M. Kazhdan, T. A. Funkhouser, and S. Rusinkiewicz, Symmetry descriptors and 3d shape matching. In Symposium on Geometry Processing, pages 117–126, 2004.
[24] G. Loy and J.-O. Eklundh, Detecting symmetry and symmetric constellations of features. In Proc. European Conference on Computer Vision, pages 508–521, 2006.
[25] A. Martinet, C. Soler, N. Holzschuch, and F. X. Sillion, Accurate detection of symmetries in 3d shapes. ACM Trans. Graph., 25 (2): 439–464, 2006.
[26] P. Minovic, S. Ishikawa, and K. Kato, Symmetry identification of a 3-d object represented by octree. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15: 507–514, 1993.
[27] N. J. Mitra, A. M. Bronstein, and M. M. Bronstein, Intrinsic regularity detection in 3d geometry. In Proc. European Conference on Computer Vision, pages 398–410, 2010.
[28] N. J. Mitra, L. J. Guibas, and M. Pauly, Partial and approximate symmetry detection for 3d geometry. ACM Trans. Graph., 25: 560–568, 2006.
[29] N. J. Mitra, L. J. Guibas, and M. Pauly, Symmetrization. ACM Trans. Graph., 26 (3): 63, 2007.
[30] P. Oesterling, C. Heine, H. Jänicke, G. Scheuermann, and G. Heyer, Visualization of high dimensional point clouds using their density distribution's topology. IEEE Trans. Vis. Comput. Graph., 99(PrePrints), 2011.
[31] M. Ovsjanikov, J. Sun, and L. J. Guibas, Global intrinsic symmetries of shapes. Comput. Graph. Forum, 27 (5): 1341–1348, 2008.
[32] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli, The toporrery: computation and presentation of multi-resolution topology. Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, pages 19–40, 2009.
[33] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas, Robust on-line computation of reeb graphs: simplicity and speed. ACM Trans. Graph., 26 (3): 58, 2007.
[34] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. J. Guibas, Discovering structural regularity in 3d geometry. ACM Trans. Graph., 27 (3), 2008.
[35] J. Podolak, A. Golovinskiy, and S. Rusinkiewicz, Symmetry-enhanced remeshing of surfaces. In Proc. Symposium on Geometry Processing, pages 235–242, 2007.
[36] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and T. A. Funkhouser, A planar-reflective symmetry transform for 3d shapes. ACM Trans. Graph., 25 (3): 549–559, 2006.
[37] D. Raviv, A. M. Bronstein, M. M. Bronstein, and R. Kimmel, Symmetries of non-rigid shapes. In Proc. IEEE International Conference on Computer Vision, pages 1–7, 2007.
[38] R. M. Rustamov, Augmented planar reflective symmetry transform. Vis. Comput., 24: 423–433, May 2008.
[39] D. Schneider, A. Wiebel, H. Carr, M. Hlawitschka, and G. Scheuermann, Interactive comparison of scalar fields based on largest contours with applications to flow visualization. IEEE Trans. Vis. Comput. Graph., 14 (6): 1475–1482, 2008.
[40] P. D. Simari, E. Kalogerakis, and K. Singh, Folding meshes: hierarchical mesh segmentation based on planar symmetry. In Proc. Symposium on Geometry Processing, pages 111–119, 2006.
[41] S. Thrun and B. Wegbreit, Shape from symmetry. In Proc. IEEE International Conference on Computer Vision, pages 1824–1831, 2005.
[42] J. Tierny, J.-P. Vandeborre, and M. Daoudi, Topology driven 3d mesh hierarchical segmentation. In Proc. Shape Modeling International, pages 215–220, 2007.
[43] J. Tierny, J.-P. Vandeborre, and M. Daoudi, Partial 3d shape retrieval by reeb pattern unfolding. Comput. Graph. Forum, 28 (1): 41–55, 2009.
[44] M. J. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. Schikore, Contour trees and small seed sets for isosurface traversal. In Symposium on Computational Geometry, pages 212–220, 1997.
[45] G. H. Weber, P.-T. Bremer, and V. Pascucci, Topological landscapes: A terrain metaphor for scientific data. IEEE Trans. Vis. Comput. Graph., 13 (6): 1416–1423, 2007.
[46] G. H. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann, Topology-controlled volume rendering. IEEE Trans. Vis. Comput. Graph., 13 (2): 330–341, 2007.
[47] J. D. Wolter, T. C. Woo, and R. A. Volz, Optimal algorithms for symmetry detection in two and three dimensions. The Visual Computer, 1 (1): 37–48, 1985.
[48] K. Xu, H. Zhang, A. Tagliasacchi, L. Liu, G. Li, M. Meng, and Y. Xiong, Partial intrinsic reflectional symmetry of 3d shapes. ACM Trans. Graph., 28 (5), 2009.
[49] E. Zhang, K. Mischaikow, and G. Turk, Feature-based surface parameterization and texture mapping. ACM Trans. Graph., 24 (1): 1–27, 2005.
[50] X. Zhang, Complementary shape comparison with additional properties. In IEEE Proceedings of Volume Graphics, pages 79–86, 2006.
[51] X. Zhang, C. L. Bajaj, and N. A. Baker, Affine invariant comparison of molecular shapes with properties. In ICES Tech Report, 2005.
[52] X. Zhang, C. L. Bajaj, B. Kwon, T. J. Dolinsky, J. E. Nielsen, and N. A. Baker, Application of new multi-resolution methods for the comparison of biomolecular electrostatic properties in the absence of global structural similarity. SIAM J. Multiscale Modeling and Simulation, 5: 1196–1213, 2006.
[53] J. Zhou and M. Takatsuka, Automatic transfer function generation using contour tree controlled residue flow model and color harmonics. IEEE Trans. Vis. Comput. Graph., 15 (6): 1481–1488, 2009.
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool