
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Dilip Mathew Thomas, Vijay Natarajan, "Symmetry in Scalar Field Topology," IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 20352044, Dec., 2011.  
BibTex  x  
@article{ 10.1109/TVCG.2011.236, author = {Dilip Mathew Thomas and Vijay Natarajan}, title = {Symmetry in Scalar Field Topology}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, number = {12}, issn = {10772626}, year = {2011}, pages = {20352044}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.236}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Symmetry in Scalar Field Topology IS  12 SN  10772626 SP2035 EP2044 EPD  20352044 A1  Dilip Mathew Thomas, A1  Vijay Natarajan, PY  2011 KW  Scalar field symmetry KW  contour tree KW  similarity measure KW  persistence KW  isosurface extraction KW  transfer function design. VL  17 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] M. J. Atallah, On symmetry detection. IEEE Trans. Computers, 34 (7): 663–666, 1985.
[2] A. Berner, M. Bokeloh, M. Wand, A. Schilling, and H.P. Seidel, A graphbased approach to symmetry detection. In Proc. Symposium on Volume and PointBased Graphics, pages 1–8, 2008.
[3] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno, Reeb graphs for shape analysis and applications. Theor. Comput. Sci., 392 (13): 5–22, 2008.
[4] S. Biasotti and S. Marini, Subpart correspondence using structure and geometry. In Proc. Eurographics Italian Chapter Conference, pages 23– 28, 2006.
[5] S. Biasotti, S. Marini, M. Spagnuolo, and B. Falcidieno, Subpart correspondence by structural descriptors of 3d shapes. ComputerAided Design, 38 (9): 1002–1019, 2006.
[6] P. Braß and C. Knauer, Testing congruence and symmetry for general 3dimensional objects. Comput. Geom., 27 (1): 3–11, 2004.
[7] P.T. Bremer, G. H. Weber, J. Tierny, V. Pascucci, M. S. Day, and J. B. Bell, A topological framework for the interactive exploration of large scale turbulent combustion. In Proc. IEEE International Conference on eScience, pages 247–254, 2009.
[8] A. M. Bronstein, M. M. Bronstein, and R. Kimmel, Topologyinvariant similarity of nonrigid shapes. International Journal of Computer Vision, 81 (3): 281–301, 2009.
[9] S. Bruckner and T. Möller, Isosurface similarity maps. Comput. Graph. Forum, 29 (3): 773–782, 2010.
[10] H. Carr and J. Snoeyink, Path seeds and flexible isosurfaces using topology for exploratory visualization. In Proc. Symposium on Data visualisation, pages 49–58, 2003.
[11] H. Carr, J. Snoeyink, and M. van de Panne, Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree. Comput. Geom., 43 (1): 42–58, 2010.
[12] A. D. Collins, A. Zomorodian, G. Carlsson, and L. J. Guibas, A barcode shape descriptor for curve point cloud data. Computers & Graphics, 28 (6): 881–894, 2004.
[13] H. Doraiswamy and V. Natarajan, Outputsensitive construction of reeb graphs. IEEE Trans. Vis. Comput. Graph., 99(PrePrints), 2011.
[14] H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological persistence and simplification. Discrete & Computational Geometry, 28 (4): 511–533, 2002.
[15] D. Ghosh, N. Amenta, and M. M. Kazhdan, Closedform blending of local symmetries. Comput. Graph. Forum, 29 (5): 1681–1688, 2010.
[16] A. Golovinskiy, J. Podolak, and T. A. Funkhouser, Symmetryaware mesh processing. In Proc. IMA Conference on the Mathematics of Surfaces, pages 170–188, 2009.
[17] W. Harvey and Y. Wang, Topological landscape ensembles for visualization of scalarvalued functions. Comput. Graph. Forum, 29 (3): 993–1002, 2010.
[18] M. Hilaga, Y. Shinagawa, T. Komura, and T. L. Kunii, Topology matching for fully automatic similarity estimation of 3d shapes. In SIGGRAPH, pages 203–212, 2001.
[19] Y. Hong and H.W. Shen, Parallel reflective symmetry transformation for volume data. Computers & Graphics, 32 (1): 41–54, 2008.
[20] X. Jiang and H. Bunke, Determination of the symmetries of polyhedra and an application to object recognition. In Workshop on Computational Geometry, pages 113–121, 1991.
[21] G. Johansson, K. Museth, and H. Carr, Flexible and topologically localized segmentation. In EuroVis, pages 179–186, 2007.
[22] M. M. Kazhdan, B. Chazelle, D. P. Dobkin, T. A. Funkhouser, and S. Rusinkiewicz, A reflective symmetry descriptor for 3d models. Algorithmica, 38 (1): 201–225, 2003.
[23] M. M. Kazhdan, T. A. Funkhouser, and S. Rusinkiewicz, Symmetry descriptors and 3d shape matching. In Symposium on Geometry Processing, pages 117–126, 2004.
[24] G. Loy and J.O. Eklundh, Detecting symmetry and symmetric constellations of features. In Proc. European Conference on Computer Vision, pages 508–521, 2006.
[25] A. Martinet, C. Soler, N. Holzschuch, and F. X. Sillion, Accurate detection of symmetries in 3d shapes. ACM Trans. Graph., 25 (2): 439–464, 2006.
[26] P. Minovic, S. Ishikawa, and K. Kato, Symmetry identification of a 3d object represented by octree. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15: 507–514, 1993.
[27] N. J. Mitra, A. M. Bronstein, and M. M. Bronstein, Intrinsic regularity detection in 3d geometry. In Proc. European Conference on Computer Vision, pages 398–410, 2010.
[28] N. J. Mitra, L. J. Guibas, and M. Pauly, Partial and approximate symmetry detection for 3d geometry. ACM Trans. Graph., 25: 560–568, 2006.
[29] N. J. Mitra, L. J. Guibas, and M. Pauly, Symmetrization. ACM Trans. Graph., 26 (3): 63, 2007.
[30] P. Oesterling, C. Heine, H. Jänicke, G. Scheuermann, and G. Heyer, Visualization of high dimensional point clouds using their density distribution's topology. IEEE Trans. Vis. Comput. Graph., 99(PrePrints), 2011.
[31] M. Ovsjanikov, J. Sun, and L. J. Guibas, Global intrinsic symmetries of shapes. Comput. Graph. Forum, 27 (5): 1341–1348, 2008.
[32] V. Pascucci, K. ColeMcLaughlin, and G. Scorzelli, The toporrery: computation and presentation of multiresolution topology. Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, pages 19–40, 2009.
[33] V. Pascucci, G. Scorzelli, P.T. Bremer, and A. Mascarenhas, Robust online computation of reeb graphs: simplicity and speed. ACM Trans. Graph., 26 (3): 58, 2007.
[34] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. J. Guibas, Discovering structural regularity in 3d geometry. ACM Trans. Graph., 27 (3), 2008.
[35] J. Podolak, A. Golovinskiy, and S. Rusinkiewicz, Symmetryenhanced remeshing of surfaces. In Proc. Symposium on Geometry Processing, pages 235–242, 2007.
[36] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and T. A. Funkhouser, A planarreflective symmetry transform for 3d shapes. ACM Trans. Graph., 25 (3): 549–559, 2006.
[37] D. Raviv, A. M. Bronstein, M. M. Bronstein, and R. Kimmel, Symmetries of nonrigid shapes. In Proc. IEEE International Conference on Computer Vision, pages 1–7, 2007.
[38] R. M. Rustamov, Augmented planar reflective symmetry transform. Vis. Comput., 24: 423–433, May 2008.
[39] D. Schneider, A. Wiebel, H. Carr, M. Hlawitschka, and G. Scheuermann, Interactive comparison of scalar fields based on largest contours with applications to flow visualization. IEEE Trans. Vis. Comput. Graph., 14 (6): 1475–1482, 2008.
[40] P. D. Simari, E. Kalogerakis, and K. Singh, Folding meshes: hierarchical mesh segmentation based on planar symmetry. In Proc. Symposium on Geometry Processing, pages 111–119, 2006.
[41] S. Thrun and B. Wegbreit, Shape from symmetry. In Proc. IEEE International Conference on Computer Vision, pages 1824–1831, 2005.
[42] J. Tierny, J.P. Vandeborre, and M. Daoudi, Topology driven 3d mesh hierarchical segmentation. In Proc. Shape Modeling International, pages 215–220, 2007.
[43] J. Tierny, J.P. Vandeborre, and M. Daoudi, Partial 3d shape retrieval by reeb pattern unfolding. Comput. Graph. Forum, 28 (1): 41–55, 2009.
[44] M. J. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. Schikore, Contour trees and small seed sets for isosurface traversal. In Symposium on Computational Geometry, pages 212–220, 1997.
[45] G. H. Weber, P.T. Bremer, and V. Pascucci, Topological landscapes: A terrain metaphor for scientific data. IEEE Trans. Vis. Comput. Graph., 13 (6): 1416–1423, 2007.
[46] G. H. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann, Topologycontrolled volume rendering. IEEE Trans. Vis. Comput. Graph., 13 (2): 330–341, 2007.
[47] J. D. Wolter, T. C. Woo, and R. A. Volz, Optimal algorithms for symmetry detection in two and three dimensions. The Visual Computer, 1 (1): 37–48, 1985.
[48] K. Xu, H. Zhang, A. Tagliasacchi, L. Liu, G. Li, M. Meng, and Y. Xiong, Partial intrinsic reflectional symmetry of 3d shapes. ACM Trans. Graph., 28 (5), 2009.
[49] E. Zhang, K. Mischaikow, and G. Turk, Featurebased surface parameterization and texture mapping. ACM Trans. Graph., 24 (1): 1–27, 2005.
[50] X. Zhang, Complementary shape comparison with additional properties. In IEEE Proceedings of Volume Graphics, pages 79–86, 2006.
[51] X. Zhang, C. L. Bajaj, and N. A. Baker, Affine invariant comparison of molecular shapes with properties. In ICES Tech Report, 2005.
[52] X. Zhang, C. L. Bajaj, B. Kwon, T. J. Dolinsky, J. E. Nielsen, and N. A. Baker, Application of new multiresolution methods for the comparison of biomolecular electrostatic properties in the absence of global structural similarity. SIAM J. Multiscale Modeling and Simulation, 5: 1196–1213, 2006.
[53] J. Zhou and M. Takatsuka, Automatic transfer function generation using contour tree controlled residue flow model and color harmonics. IEEE Trans. Vis. Comput. Graph., 15 (6): 1481–1488, 2009.