
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Dirk J. Lehmann, Holger Theisel, "Features in Continuous Parallel Coordinates," IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 19121921, Dec., 2011.  
BibTex  x  
@article{ 10.1109/TVCG.2011.200, author = {Dirk J. Lehmann and Holger Theisel}, title = {Features in Continuous Parallel Coordinates}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, number = {12}, issn = {10772626}, year = {2011}, pages = {19121921}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.200}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Features in Continuous Parallel Coordinates IS  12 SN  10772626 SP1912 EP1921 EPD  19121921 A1  Dirk J. Lehmann, A1  Holger Theisel, PY  2011 KW  Features KW  Parallel Coordinates KW  Topology KW  Visualization. VL  17 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] B. Ackland and N. Weste, Real time animation playback on a frame store display system. In Proceedings of the 7th annual conference on Computer graphics and interactive techniques, SIGGRAPH '80, pages 182–188, New York, NY, USA, 1980. ACM.
[2] S. Bachthaler, S. Frey, and D. Weiskopf, Poster: Cudaaccelerated continuous 2d scatterplots. IEEE Visualization Conference, 2009.
[3] S. Bachthaler and D. Weiskopf, Continuous scatterplots. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization / Information Visualization 2008), 14 (6): 1428–1435, NovemberDecember 2008.
[4] S. Bachthaler and D. Weiskopf, Efficient and adaptive rendering of 2d continuous scatterplots. Computer Graphics Forum, 28 (3): 743–750, 2009.
[5] C. L. Bajaj, V. Pascucci, and D. R. Schikore, Visualization of scalar topology for structural enhancement. In Proc. of IEEE Visualization, pages 51–58, 1998.
[6] R. Becker and W. Cleveland, Brushing scatterplots. Technometrics, 29, 2: 127–142, 1987.
[7] P.T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, A topological hierarchy for functions on triangulated surfaces. IEEE Transactions on Visualization and Computer Graphics, 10 (4): 385–396, 2004.
[8] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R. Evans, Reconstruction and representation of 3d objects with radial basis functions. SIGGRAPH 2001: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 67–76, 2001.
[9] H. Edelsbrunner, J. Harer, and A. Zomorodian, Hierarchical morsesmale complexes for piecewise linear 2manifolds. Discrete and Computational Geometry, 30 (1): 87–107, 2003.
[10] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice. AddisonWesley, Reading, MA, 2 edition, 1990.
[11] R. Forman, Morse theory for cellcomplexes. Advances in Mathematics, 134, 1: 90–145, 1998.
[12] R. Forman, A user's guide to discrete morse theory. Sminaire Lotharingien de Combinatoire, B48c, 2002.
[13] J. Heinrich, S. Bachthaler, and D. Weiskopf, Progressive splatting of continuous scatterplots and parallel coordinates. Computer Graphics Forum (Proceedings EuroVis 2011), 30 (3), 2011.
[14] J. Heinrich and D. Weiskopf, Continuous Parallel Coordinates. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization / Information Visualization 2009), 15 (6): 1531–1538, 2009.
[15] A. Inselberg, The plane with parallel coordinates. The Visual Computer, 1 (2): 69–91, 1985.
[16] A. Inselberg, Parallel coordinates. Publisher Springer Berlin, 2009.
[17] A. Inselberg and B. Dimsdale, Multidimensional lines 2: Proximity and applications. SIAM Journal on Applied Mathematics, 54 (2): 578–596, 1994.
[18] D. J. Lehmann and H. Theisel, Discontinuities in continuous scatterplots. IEEE Transactions on Visualization and Computer Graphics (Proceedings IEEE Visualization), 16 (6): 1291–1300, 2010.
[19] M. Otto, T. Germer, H.C. Hege, and H. Theisel, Uncertain 2d vector field topology. In Computer Graphics Forum (Proceedings of Eurographics 2010), volume 29, pages 347–356, Norrkping, Sweden, 5 2010.
[20] R. Peikert and M. Roth, The Parallel Vectors Operator  A Vector Field Visualization Primitive. In Proceedings of the 10th IEEE Visualization Conference (VIS '99), volume 0, pages 263–270, Washington, DC, USA, 1999. IEEE Computer Society.
[21] R. Peikert and F. Sadlo, Height Ridge Computation and Filtering for Visualization. In Proceedings of Pacific Vis 2008, pages 119–126, March 2008.
[22] M. Ruetten, Cyclone data set: physical flow simulation within a hydrocyclone, realized at institute of aerodynamics, german aerospace center.
[23] C. Shannon, A mathematical theory of communication. Bell Systems Techn. Journal, 27: 623–656, 1948.
[24] H. Theisel, CAGD and Scientific Visualization. Habilitation theses, University of Rostock, Computer Science Department, 2001.
[25] H. Theisel and H.P. Seidel, Feature flow fields. In G.P. Bonneau, S. Hahmann, and C. H (Ed.), editors, Proc. Joint Eurographics  IEEE TCVG Symposium on Visualization (VisSym'03), pages 141–148, 2003.
[26] T. Weinkauf, , Extraction of Topological Structures in 2D and 3D Vector Fields. PhD thesis, University Magdeburg, 2008.
[27] T. Weinkauf, H. Theisel, A. V. Gelder, and A. Pang, Stable feature flow fields. IEEE Transactions on Visualization and Computer Graphics, 17: 770–780, 2011.
[28] T. Weinkauf, H. Theisel, H.C. Hege, and H.P. Seidel, Boundary switch connectors for topological visualization of complex 3d vector fields. In: Proc. Joint Eurographics  IEEE TCVG Symposium on Visualization (VisSym'04), pages 183–192, 2004.