
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Bei Wang, B. Summa, V. Pascucci, M. VejdemoJohansson, "Branching and Circular Features in High Dimensional Data," IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 19021911, Dec., 2011.  
BibTex  x  
@article{ 10.1109/TVCG.2011.177, author = { Bei Wang and B. Summa and V. Pascucci and M. VejdemoJohansson}, title = {Branching and Circular Features in High Dimensional Data}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, number = {12}, issn = {10772626}, year = {2011}, pages = {19021911}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.177}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Branching and Circular Features in High Dimensional Data IS  12 SN  10772626 SP1902 EP1911 EPD  19021911 A1  Bei Wang, A1  B. Summa, A1  V. Pascucci, A1  M. VejdemoJohansson, PY  2011 KW  Data visualization KW  Topology KW  Algorithm design and analysis KW  Feature extraction KW  Approximation methods KW  topological analysis. KW  Dimensionality reduction KW  circular coordinates KW  visualization VL  17 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] Free motion capture. http:/gfxmotioncapture.blogspot.com/.
[2] D. Attali, A. Lieutier, and D. Salinas, Efficient data structure for representing and simplifying simplicial complexes in high dimensions. Proceedings 27th Annual ACM Symposium on Computational Geometry, pages 501–509, 2011
[3] D. Attali, A. Lieutier, and D. Salinas, VietorisRips complexes also provide topologically correct reconstructions of sampled shapes. Proceedings 27th Annual ACM Symposium on Computational Geometry, pages 491–500, 2011
[4] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15: 1373–1396, 2003
[5] P. Bendich, D. CohenSteiner, H. Edelsbrunner, J. Harer, and D. Morozov, Inferring local homology from sampled stratified spaces. Proceedings 48th Annual IEEE Symposium on Foundations of Computer Science, pages 536–546, 2007
[6] P. Bendich, H. Edelsbrunner, and M. Kerber, Computing robustness and persistence for images. IEEE Transactions on Visualization and Computer Graphics, 16: 1251–1260, 2010
[7] P. Bendich, B. Wang, and S. Mukherjee, Towards stratification learning through homology inference. AAAI 2010 Fall Symposium on Manifold Learning and its Applications, 2010
[8] D. Burghelea and T. K. Dey, Defining and computing topological persistence for 1cocycles. Manuscript, December 2010
[9] O. Busaryev, T. K. Dey, and Y. Wang, Tracking a generator by persistence. Discrete Mathematics, Algorithms and Applications, 2 (4): 539– 552, 2010
[10] G. Carlsson, A. J. Zomorodian, A. Collins, and L. J. Guibas, Persistence barcodes for shapes. Proceedings Eurographs/ACM SIGGRAPH Symposium on Geometry Processing, pages 124–135, 2004
[11] F. Chazal, D. CohenSteiner, M. Glisse, L. J. Guibas, and S. Y. Oudot, Proximity of persistence modules and their diagrams. Proceedings 25th Annual Symposium on Computational Geometry, pages 237–246, 2009
[12] C. Chen and D. Freedman, Quantifying homology classes. Proceedings 25th International Symposium on Theoritical Aspects of Computer Science, 1: 169–180, 2008
[13] C. Chen and M. Kerber, Persistent homology computation with a twist. Proceedings 27th European Workshop on Computational Geometry, 2011
[14] V. de Silva and G. Carlsson, Topological estimation using witness complexes. Symposium on PointBased Graphics, pages 157–166, 2004
[15] V. de Silva, D. Morozov, and M. VejdemoJohansson, Persistent cohomology and circular coordinates. Proceedings 25th Annual Symposium on Computational Geometry, pages 227–236, 2009
[16] V. de Silva, D. Morozov, and M. VejdemoJohansson, Dualities in persistent (co)homology. Manuscript, 2010
[17] V. de Silva, D. Morozov, and M. VejdemoJohansson, Persistent cohomology and circular coordinates. Discrete & Computational Geometry, pages 1–23, 2011
[18] T. K. Dey, A. N. Hirani, and B. Krishnamoorthy, Optimal homologous cycles, total unimodularity, and linear programming. Proceedings 42nd ACM Symposium on Theory of Computing, pages 221–230, 2010
[19] T. K. Dey, K. Li, J. Sun, and D. CohenSteiner, Computing geometryaware handle and tunnel loops in 3D models. SIGGRAPH, 45: 1–9, 2008
[20] T. K. Dey, J. Sun, and Y. Wang, Approximating loops in a shortest homology basis from point data. Proceedings Annual Symposium on Computational Geometry, pages 166–175, 2010
[21] M. Dixon, N. Jacobs, and R. Pless, Finding minimal parametrizations of cylindrical image manifolds. Proceedings Conference on Computer Vision and Pattern Recognition Workshop, page 192, 2006
[22] P. Dlotko, A fast algorithm to compute cohomology group generators of orientable 2manifolds 3rd International Workshop on Computational Topology in Image Context, 2010
[23] H. Edelsbrunner and J. Harer, Persistent homology  a survey. Contemporary Mathematics, 453:257–282, 2008
[24] H. Edelsbrunner and J. Harer, Computational Topology: An Introduction. American Mathematical Society, Providence, RI, USA, 2010
[25] H. Edelsbrunner, D. Letscher, and A. J. Zomorodian, Topological persistence and simplification. Discrete and Computational Geometry, 28: 511– 533, 2002
[26] Éric Colin de Verdière and F. Lazarus, Optimal system of loops on an orientable surface. Discrete Computational Geometry, 33: 627–636, 2005
[27] J. Erickson, E. W. Chambers, and A. Nayyeri, Homology flows, cohomology cuts. Proceedings 41st Annual ACM Symposium on Theory of Computing, pages 273–282, 2009
[28] J. Erickson, E. W. Chambers, and A. Nayyeri, Minimum cuts and shortest homologous cycles. Proceedings 25th Annual ACM Symposium on Computational Geometry, pages 377–385, 2009
[29] J. Erickson and K. Whittlesey, Greedy optimal homotopy and homology generators. Proceedings 16th Annual ACMSIAM symposium on Discrete Algorithms, pages 1038–1046, 2005
[30] J. Erickson and P. Worah, Computing the shortest essential cycle. Discrete and Computational Geometry, 2010
[31] R. K. Gabriel and R. R. Sokal, A new statistical approach to geographic variation analysis. Systematic Zoology, 18 (3): 259–278, 1969
[32] S. Gerber, P.T. Bremer, V. Pascucci, and R. Whitaker, Visual exploration of high dimensional scalar functions. IEEE Transactions on Visualization and Computer Graphics, 16 (6): 1271–1280, 2010
[33] P. Giblin, Graphs, Surfaces and Homology. Cambridge University Press, New York, NY, USA, 2010
[34] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002
[35] O. M. C. Lab Motion capture data sets.
[36] N. D. Lawrence, Probabilistic spectral dimensionality reduction. Manuscript, 2010
[37] J. A. Lee and M. Verleysen, Nonlinear dimensionality reduction of data manifolds with essential loops. Neurocomputing, 67: 29–53, 2005
[38] D. Morozov, Dionysus library for computing persistent homology.
[39] J. R. Munkres, Elements of algebraic topology. AddisonWesley, Redwood City, CA, USA, 1984
[40] P. Oesterling, C. Heine, H. Jänicke, and G. Scheuermann, Visual analysis of high dimentional point clouds using topological landscapes. IEEE Pacific Visualization Symposium, pages 113–120, 2010
[41] P. Oesterling, G. Scheuermann, S. Teresniak, G. Heyer, S. Koch, T. Ertl, and G. H. Weber, Twostage framework for a topologybased projection and visualization of classified document collections. Proceedings IEEE Visual Analytics Science and Technology, pages 91–98, 2010
[42] R. Pless and I. Simon, Embedding images in nonflat spaces. In Conference on Imaging Science Systems and Technology, pages 182–188, 2002
[43] S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323–2326, 2000
[44] B. Schölkopf, A. Smola, and K.R. Müller, Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10 (5): 1299–1319, 1998
[45] S. Takahashi, I. Fujishiro, and M. Okada, Applying manifold learning to plotting approximate contour trees. IEEE Transactions on Visualization and Computer Graphics, 15 (6): 1185–1192, 2009
[46] J. B. Tenenbaum, V. de Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction. Science, 290 (5500): 2319–2323, 2000
[47] L. van der Maaten, Matlab toolbox for dimensionality reduction. http://homepage.tudelft.nl19j49/.
[48] G. Weber, P.T. Bremer, and V. Pascucci, Topological landscapes: A terrain metaphor for scientific data. IEEE Transactions on Visualization and Computer Graphics, 13 (6): 1416–1423, 2007
[49] A. J. Zomorodian, Fast construction of the VietorisRips complex. Computers & Graphics, 34 (3): 263–271, 2010
[50] A. J. Zomorodian and G. Carlsson, Computing persistent homology. Discrete and Computational Geometry, 33 (2): 249–274, 2005
[51] A. J. Zomorodian and G. Carlsson, Localized homology. Computational Geometry: Theory and Applications, 2008