
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Carlos Correa, Peter Lindstrom, "Towards Robust Topology of Sparsely Sampled Data," IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 18521861, Dec., 2011.  
BibTex  x  
@article{ 10.1109/TVCG.2011.245, author = {Carlos Correa and Peter Lindstrom}, title = {Towards Robust Topology of Sparsely Sampled Data}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, number = {12}, issn = {10772626}, year = {2011}, pages = {18521861}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.245}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Towards Robust Topology of Sparsely Sampled Data IS  12 SN  10772626 SP1852 EP1861 EPD  18521861 A1  Carlos Correa, A1  Peter Lindstrom, PY  2011 KW  Neighborhood graphs KW  topology KW  sparsely sampled data. VL  17 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] D. F. Andrews, Plots of highdimensional data. Biometrics, 28 (1): 125– 136, 1972.
[2] D. Asimov, The grand tour: a tool for viewing multidimensional data. SIAM J. Sci. Stat. Comput., 6: 128–143, January 1985.
[3] P. Berkhin, Survey of clustering data mining techniques. Technical report, Accrue Software, San Jose, CA, 2002.
[4] P. Bose, S. Collette, F. Hurtado, M. Korman, S. Langerman, V. Sacristan, and M. Saumell, Some Properties of Higher Order Delaunay and Gabriel Graphs. In Proceedings of the Canadian Conference on Computational Geometry (CCCG10), 2010. 4 pages.
[5] P. Bose, S. Collette, S. Langerman, A. Maheshwari, P. Morin, and M. Smid, Sigmalocal graphs. J. of Discrete Algorithms, 8: 15–23, March 2010.
[6] G. Box and N. Draper, Empirical ModelBuilding and Response Surfaces. John Wiley & Sons, 1987.
[7] P.T. T, V. Pascucci, and B. Hamann, Maximizing adaptivity in hierarchical topological models. In Shape Modeling and Applications, 2005 International Conference, pages 298 – 307, 2005.
[8] J. Cardinal, S. Collette, and S. Langerman, Empty region graphs. Comput. Geom. Theory Appl., 42: 183–195, April 2009.
[9] H. Carr and J. Snoeyink, Representing interpolant topology for contour tree computation. In TopologyBased Methods in Visualization II, Lecture Notes in Computer Science. SpringerVerlag, 2008.
[10] H. Carr, J. Snoeyink, and U. Axen, Computing contour trees in all dimensions. Comput. Geom. Theory Appl., 24: 75–94, February 2003.
[11] J. Carroll and P. Arabie, Multidimensional scaling. Annual Review of Psychology, 31: 607–649, 1980.
[12] F. Chazal, L. J. Guibas, S. Y. Oudot, and P. Skraba, Analysis of scalar fields over point cloud data. In Proceedings of the twentieth Annual ACMSIAM Symposium on Discrete Algorithms, SODA '09, pages 1021–1030, Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics.
[13] H. Chernoff, The Use of Faces to Represent Points in KDimensional Space Graphically. Journal of the American Statistical Association, 68 (342): 361–368, 1973.
[14] R. J. Cimikowski, Properties of some euclidean proximity graphs. Pattern Recogn. Lett., 13: 417–423, June 1992.
[15] W. C. Cleveland and M. E. McGill, Dynamic Graphics for Statistics. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1988.
[16] C. D. Correa, P. Lindstrom, and P.T. Bremer, Topological spines: A structurepreserving visual representation of scalar fields. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization / Information Visualization 2011), 17 (12), 2011.
[17] N. R. Draper and H. Smith, Applied Regression Analysis (Wiley Series in Probability and Statistics). John Wiley & Sons Inc, 2 sub edition, 1998.
[18] Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi Tessellations: Applications and Algorithms. SIAM Review, 41 (4):637–676, 1999.
[19] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, Morsesmale complexes for piecewise linear 3manifolds. In Proceedings of the nineteenth annual symposium on Computational geometry, SCG '03, pages 361–370, New York, NY, USA, 2003. ACM.
[20] H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological persistence and simplification. Discrete & Computational Geometry, pages 511–533, 2002.
[21] I. Fodor, A Survey of Dimension Reduction Techniques, 2002.
[22] S. Fortune, Voronoi diagrams and delaunay triangulations. In J. E. Goodman, and J. O'Rourke editors, , Handbook of discrete and computational geometry, pages 377–388. CRC Press, Inc., Boca Raton, FL, USA, 1997.
[23] I. Fujishiro, T. Azuma, and Y. Takeshima, Automating transfer function design for comprehensible volume rendering based on 3d field topology analysis (case study). In Proceedings of the conference on Visualization '99: celebrating ten years, VIS '99, pages 467–470, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.
[24] R. K. Gabriel and R. R. Sokal, A new statistical approach to geographic variation analysis. Systematic Zoology, 18 (3): 259–278, Sept. 1969.
[25] S. Gerber, P.T. T, V. Pascucci, and R. Whitaker, Visual exploration of high dimensional scalar functions. IEEE Transactions on Visualization and Computer Graphics, 16: 1271–1280, 2010.
[26] A. Gyulassy, V. Natarajan, V. Pascucci, P.T. T, and B. Hamann, Topologybased simplification for feature extraction from 3d scalar fields. Visualization Conference, IEEE, 0: 68, 2005.
[27] W. Harvey and Y. Wang, Topological landscape ensembles for visualization of scalarvalued functions. Computer Graphics Forum, 29 (3): 993– 1002, 2010.
[28] T. Hastie and R. Tibshirani, Generalized Additive Models. Chapman and Hall, 1990.
[29] A. Inselberg, The plane with parallel coordinates. The Visual Computer, 1: 69–91, 1985. 10.1007/BF01898350.
[30] J. Jaromczyk and G. Toussaint, Relative neighborhood graphs and their relatives. Proceedings of the IEEE, 80 (9): 1502 –1517, Sept. 1992.
[31] E. Kandogan, Star coordinates: A multidimensional visualization technique with uniform treatment of dimensions. In In Proceedings of the IEEE Information Visualization Symposium, Late Breaking Hot Topics, pages 9–12, 2000.
[32] J. M. Keil and C. A. Gutwin, Classes of graphs which approximate the complete euclidean graph. Discrete Comput. Geom., 7: 13–28, January 1992.
[33] D. Kirkpatrick and J. Radke, A framework for computational morphology. CG, 85: 217–248, 1985.
[34] D. W. Matula and R. R. Sokal, Properties of gabriel graphs relevant to geographic variation research and the clustering of points in the plane. Geographical Analysis, 12 (3): 205–222, 1980.
[35] M. D. McKay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21 (2): 239–245, 1979.
[36] M. Meila, Comparing clusterings—an information based distance. Journal of Multivariate Analysis, 98 (5): 873–895, 2007.
[37] M. Morse, Relations between the critical points of a real function on n independent variables. Trans. Am. Math. Soc., 27 (3): 345–396, 1925.
[38] P. Niyogi, S. Smale, and S. Weinberger, A topological view of unsupervised learning from noisy data. Preprint, 2008.
[39] P. Oesterling, C. Heine, H. Janicke, G. Scheuermann, and G. Heyer, Visualization of high dimensional point clouds using their density distribution's topology. IEEE Transactions on Visualization and Computer Graphics, 99(PrePrints), 2011.
[40] P. Oesterling, G. Scheuermann, S. Teresniak, G. Heyer, S. Koch, T. Ertl, and G. Weber, Twostage framework for a topologybased projection and visualization of classified document collections. In Visual Analytics Science and Technology (VAST), 2010 IEEE Symposium on, pages 91 – 98, oct. 2010.
[41] J. C. Park, H. Shin, and B. K. Choi, Elliptic gabriel graph for finding neighbors in a point set and its application to normal vector estimation. Comput. Aided Des., 38:619–626, June 2006.
[42] V. Pascucci, G. Scorzelli, P.T. T, and A. Mascarenhas, Robust online computation of reeb graphs: simplicity and speed. ACM Trans. Graph., 26, July 2007.
[43] H. Pohlheim, Examples of Objective Functions, 2006.
[44] G. Reeb, Sur les points singuliers d'une forme de Pfaff completement intégrable ou d'une fonction numérique. Comptes Rendus de L'Académie des Séances de Paris, 222: 847–849, 1946.
[45] R. Seidel, The upper bound theorem for polytopes: an easy proof of its asymptotic version. Computational Geometry, 5 (2): 115 – 116, 1995.
[46] R. Srinivasan, Importance sampling: Applications in communications and detection. Springer, 2002.
[47] B. Tang, Orthogonal arraybased latin hypercubes. Journal of the American Statistical Association, 88 (424): 1392–1397, 1993.
[48] S. Thompson, Sampling. John Wiley & Sons, Inc., 1992.
[49] G. Toussaint, Proximity graphs for nearest neighbor decision rules: Recent progress. In Progress, Proceedings of the 34 th Symposium on the INTERFACE, pages 17–20, 2002.
[50] G. T. Toussaint, Pattern recognition and geometric complexity. In Proc. 5th ICPR, pages 1324–1347, 1980.
[51] F. Tsai, Comparative study of dimensionality reduction techniques for data visualization. Journal of Artificial Intelligence, 3: 119–134, 2010.
[52] R. Urquhart, Graph theoretical clustering based on limited neighbourhood sets. Pattern Recognition, 15 (3): 173 – 187, 1982.
[53] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore, Contour trees and small seed sets for isosurface traversal. In ACM Symposium on Computational geometry, pages 212–220, 1997.
[54] R. C. Veltkamp, The γneighborhood graph. Computational Geometry, 1 (4): 227–246, 1992.