
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
C. Correa, P. Lindstrom, PeerTimo Bremer, "Topological Spines: A Structurepreserving Visual Representation of Scalar Fields," IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 18421851, Dec., 2011.  
BibTex  x  
@article{ 10.1109/TVCG.2011.244, author = {C. Correa and P. Lindstrom and PeerTimo Bremer}, title = {Topological Spines: A Structurepreserving Visual Representation of Scalar Fields}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, number = {12}, issn = {10772626}, year = {2011}, pages = {18421851}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.244}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Topological Spines: A Structurepreserving Visual Representation of Scalar Fields IS  12 SN  10772626 SP1842 EP1851 EPD  18421851 A1  C. Correa, A1  P. Lindstrom, A1  PeerTimo Bremer, PY  2011 KW  Topology KW  Data visualization KW  Approximation methods KW  Manifolds KW  MorseSmale complex. KW  Scalar field topology KW  topological spine KW  extremum graph VL  17 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] D. H. Ackley, A connectionist machine for genetic hillclimbing. Kluwer, Boston, 1987.
[2] R. F. W. Bader, Atoms in Molecules: A Quantum Theory. Oxford University Press, 1994.
[3] K. Beketayev, G. Weber, M. Haranczyk, M. Hlawitschka, P.T. Bremer, and B. Hamann, Topologybased visualization of transformation pathways in complex chemical systems. In Eurographics Symposium on Visualization, 2011. To appear.
[4] P.T. Bremer, V. Pascucci, and B. Hamann, Maximizing adaptivity in hierarchical topological models. In Shape Modeling and Applications, pages 298–307, 2005.
[5] P.T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. B. Bell, Interactive exploration and analysis of large scale simulations using topologybased data segmentation. IEEE Transactions on Visualization and Computer Graphics, 2010. To appear.
[6] H. Carr, J. Snoeyink, and U. Axen, Computing contour trees in all dimensions. Computational Geometry, 24 (2): 75 – 94, 2003.
[7] H. Carr, J. Snoeyink, and M. van de Panne, Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree. Computational Geometry, 43 (1):42–58, 2010.
[8] F. Chazal, L. Guibas, S. Oudot, and P. Skraba, Analysis of scalar fields over point cloud data. In ACMSIAM Symposium on Discrete Algorithms, pages 1021–1030, 2009.
[9] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, MorseSmale complexes for piecewise linear 3manifolds. In ACM Symposium on Computational geometry, pages 361–370, 2003.
[10] H. Edelsbrunner, D. Morozov, and V. Pascucci, Persistencesensitive simplification functions on 2manifolds. In Proceedings of the twentysecond annual symposium on Computational geometry, SCG '06, pages 127– 134, New York, NY, USA, 2006. ACM.
[11] E. Espinosa, M. Souhassou, H. Lachekar, and C. Lecomte, Topological analysis of the electron density in hydrogen bonds. Acta Crystallographica Section Bstructural Science, 55: 563–572, 1999.
[12] I. Fujishiro, Y. Takeshima, T. Azuma, and S. Takahashi, Volume data mining using 3D field topology analysis. IEEE Computer Graphics & Applications, 20 (5): 46–51, 2000.
[13] S. Gerber, P.T. Bremer, V. Pascucci, and R. T. Whitaker, Visual exploration of high dimensional scalar functions. IEEE Transactions on Visualization and Computer Graphics, 16 (6): 1271–1280, 2010.
[14] A. Gyulassy, P.T. Bremer, V. Pascucci, and B. Hamann, A practical approach to MorseSmale complex computation: Scalability and generality. IEEE Transactions on Visualization and Computer Graphics, 14 (6): 1619–1626, 2008.
[15] A. Gyulassy, V. Natarajan, V. Pascucci, P.T. Bremer, and B. Hamann, Topologybased simplification for feature extraction from 3D scalar fields. IEEE Transactions on Computer Graphics and Visualization, 12 (4): 474–484, 2006.
[16] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann, , Efficient computation of MorseSmale complexes for threedimensional scalar functions. IEEE Transactions on Visualization and Computer Graphics, 13 (6): 1440–1447, 2007.
[17] W. Harvey and Y. Wang, Topological landscape ensembles for visualization of scalarvalued functions. Computer Graphics Forum, 29 (3): 993–1002, 2010.
[18] J. L. Helman and L Hesselink, Visualizing vector field topology in fluid flows. IEEE Computer Graphics & Applications, 11 (3):36–46, 1991.
[19] C. K. Johnson, M. N. Burnett, and W. D. Dunbar, Crystallographic Topology and its Applications, pages 1–25. 1996.
[20] D. Laney, P.T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci, Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 1052–1060, 2006.
[21] L. Leherte, J. Glasgow, K. Baxter, E. Steeg, and S. Fortier, Analysis of ThreeDimensional Protein Images. Journal of Artificial Intelligence Research, 7: 125–159, 1997.
[22] P. Oesterling, C. Heine, H. Janicke, G. Scheuermann, and G. Heyer, Visualization of high dimensional point clouds using their density distribution's topology. IEEE Transactions on Visualization and Computer Graphics, 2011. To appear.
[23] V. Pascucci, K. ColeMacLaughlin, and G. Scorzelli, Multiresolution computation and presentation of contour trees. Technical Report UCRLPROC208680, Lawrence Livermore National Laboratory, 2005.
[24] V. Pascucci and K. ColeMcLaughlin, Parallel computation of the topology of level sets. Algorithmica, 38: 249–268, 2003.
[25] V. Pascucci, G. Scorzelli, P.T. Bremer, and A. Mascarenhas, Robust online computation of Reeb graphs: Simplicity and speed. ACM Transactions on Graphics, 26 (3):58. 1–58.9, 2007.
[26] J. Sahner, B. Weber, S. Prohaska, and H. Lamecker, Extraction of feature lines on surface meshes based on discrete Morse theory. Computer Graphics Forum, 27 (3): 735–742, 2008.
[27] H. Schwefel, Numerical optimization of computer models. Wiley, 1981.
[28] Y. Shinagawa and T. Kunii, Constructing a Reeb graph automatically from cross sections. IEEE Computer Graphics & Applications, 11 (5): 44– 51, 1991.
[29] S. Takahashi, Y. Takeshima, and I. Fujishiro, Topological volume skeletonization and its application to transfer function design. Graphical Models, 66 (1): 24–49, 2004.
[30] H. Theisel, T. Weinkauf, H.C. Hege, and H.P. Seidel, Saddle connectors — An approach to visualizing the topological skeleton of complex 3D vector fields. In IEEE Visualization, pages 225–232, 2003.
[31] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci, Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees. IEEE Transactions on Visualization and Computer Graphics, 15 (6): 1177–1184, 2009.
[32] I. G. Tollis, G. Di Battista, P. Eades, and R. Tamassia, Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, July 1998.
[33] M. J. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. Schikore, Contour trees and small seed sets for isosurface traversal. In ACM Symposium on Computational Geometry, pages 212–220, 1997.
[34] G. Weber, P.T. Bremer, and V. Pascucci, Topological landscapes: A terrain metaphor for scientific data. IEEE Transactions on Visualization and Computer Graphics, 13 (6): 1077– 2626, 2007.
[35] G. Weber, G. Scheuermann, H. Hagen, and B. Hamann, Exploring scalar fields using critical isovalues. In IEEE Visualization, pages 171–178, 2002.
[36] T. Weinkauf and D. Günther, Separatrix persistence: Extraction of salient edges on surfaces using topological methods. Computer Graphics Forum, 28 (5): 1519 –1528, 2009.