The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2011 vol.17)
pp: 1832-1841
Mahsa Mirzargar , University of FLorida
ABSTRACT
We present a quasi interpolation framework that attains the optimal approximation-order of Voronoi splines for reconstruction of volumetric data sampled on general lattices. The quasi interpolation framework of Voronoi splines provides an unbiased reconstruction method across various lattices. Therefore this framework allows us to analyze and contrast the sampling-theoretic performance of general lattices, using signal reconstruction, in an unbiased manner. Our quasi interpolation methodology is implemented as an efficient FIR filter that can be applied online or as a preprocessing step. We present visual and numerical experiments that demonstrate the improved accuracy of reconstruction across lattices, using the quasi interpolation framework.
INDEX TERMS
Voronoi Spline, Quasi Interpolation, Volume Visualization, Box spline.
CITATION
Mahsa Mirzargar, "Quasi Interpolation With Voronoi Splines", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 12, pp. 1832-1841, Dec. 2011, doi:10.1109/TVCG.2011.230
REFERENCES
[1] A. Adams, J. Baek, and A. Davis, Fast high-dimensional filtering using the permutohedral lattice. Eurographics (Computer Graphics Forum), 2010.
[2] U. R. Alim, A. Entezari, and T. Möller, The Lattice-Boltzmann Method on Optimal Sampling Lattices. IEEE Trans. Vis. Comput. Graph., 15 (4): 630–641, 2009.
[3] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach, and M. Parlange, Sensorscope: Out-of-the-box environmental monitoring. In Proc of the 7th international conference on Information processing in sensor networks, pages 332-343,Washington, DC, 2008. IEEE CS.
[4] H. Behmard and A. Faridani, Sampling of bandlimited functions on unions of shifted lattices. Journal of Fourier Analysis and Applications, 8 (l): 43-58, 2002.
[5] J. Cawse, Combinatorial Materials Development using Gradient Arrays. Sphere Covering Lattice Designs. In Combinatorial and artificial intelligence methods in materials science II, Boston, Massachusetts, pages 307-319.Materials Research Society, 2003.
[6] L. Condat and D. Van De Ville, Quasi-interpolating spline models for hexagonally-sampled data. IEEE Transactions on Image Processing, 16 (5): 1195-1206, May 2007.
[7] J. Conway and N. Sloane, Sphere Packings, Lattices and Groups. Springer, 3rd edition, 1999.
[8] B. Csebfalvi, Prefiltered gaussian reconstruction for high-quality rendering of volumetric data sampled on a body-centered cubic grid. In IEEE Visualization, pages 311-318, 2005.
[9] B. Csebfalvi, An evaluation of prefiltered b-spline reconstruction for quasi-interpolation on the body-centered cubic lattice. IEEE Transactions on Visualization and Computer Graphics, 16: 499-512, May 2010.
[10] B. Csebfalvi and M. Hadwiger, Prefiltered B-spline reconstruction for hardware-accelerated rendering of optimally sampled volumetric data. In Workshop on Vision, Modeling and Visualization, pages 325-332, 2006.
[11] C. de Boor, Quasiinterpolants and approximation power of multivariate splines. In Computation of curves and surfaces, volume 307 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 313-345. Kluwer, 1990.
[12] C. de Boor, Approximation order without quasi-interpolants. Approximation Theory ( E. Cheney, C Chui, and L. Schumaker eds.), 1993.
[13] C. de Boor, K. Hollig, and S. Riemenschneider, Box Splines, volume 98 of Applied Mathematical Sciences. Springer- Verlag, New York, 1993.
[14] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Processing. Prentice-Hall, Inc., Englewood-Cliffs, NJ, 1st edition, 1984.
[15] D. S. Ebert, H. Hagen, K. I. Joy, and D. A. Keim, 07291 abstracts collection - scientific visualization. In Scientific Visualization, number 07291 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2008.
[16] Y. Eldar, Compressed sensing of analog signals in shift-invariant spaces. Signal Processing, IEEE Transactions on, 57 (8): 2986-2997, 2009.
[17] A. Entezari, Optimal Sampling Lattices and Trivariate Box Splines. PhD thesis, Simon Fraser University, Vancouver, Canada, July 2007.
[18] A. Entezari, R. Dyer, and T. Moller, Linear and cubic box splines for the body centered cubic lattice. In Proceedings of the IEEE Conference on Visualization, pages 11-18, Oct. 2004.
[19] A. Entezari, M. Mirzargar, and L. Kalantari, Quasi-interpolation on the Body Centered Cubic Lattice. In Computer Graphics Forum, volume 28, pages 1015-1022. Blackwell Publishing Ltd, 2009.
[20] A. Entezari, D. Van De Ville, and T. Moller, Practical box splines for reconstruction on the body centered cubic lattice. Vis. Comput. Graph., IEEE Trans., 14 (2): 313-328, March-April 2008.
[21] B. Finkbeiner, A. Entezari, D. Van De Ville, and T. Moller, Efficient volume rendering on the body centered cubic lattice using box splines. Computers & Graphics, In Press, Corrected Proof:-, 2010.
[22] S. Gesbert, C. Haneveld, and S. Saleh, 3D” hexagonal” prestack depth migration of seismic data. The Leading Edge, 26 (10): 1262, 2007.
[23] C. Hamitouche, L. Ibanez, and C. Roux, Discrete Topology of (A*n) Optimal Sampling Grids. Interest in Image Processing and Visualization. J. Math. Imaging Vis., 23 (3): 401– 17, 2005.
[24] C. Johnson, Top scientific visualization research problems. Computer Graphics and Applications, IEEE, 24 (4): 13-17, July-Aug. 2004.
[25] C. Johnson and A. Sanderson, A next step: Visualizing errors and uncertainty. Comp Graph and Appl, IEEE, 23 (5): 6–10, Sept.-Oct. 2003.
[26] M. Kim, Symmetric Box Splines For Root Lattices. PhD thesis, University of Florida, Gainesville, Florida, August 2008.
[27] M. Kim, A. Entezari, and J. Peters, Box Spline Reconstruction on the Face Centered Cubic Lattice. IEEE Trans. Vis. Comput. Graph., 14 (6): 1523-1530, 2008.
[28] H. Kunsch, E. Agrell, and F. Hamprecht, Optimal lattices for sampling. Info. Theory, IEEE Tram, on, 51 (2): 634–647, Feb. 2005.
[29] Y. Lu and M. Do, A theory for sampling signals from a union of sub-spaces. Signal Processing, IEEE Trans on, 56 (6): 2334 -2345, 2008.
[30] Y M. Lu, M. N. Do, and R. S. Laugesen, A computable Fourier condition generating alias-free sampling lattices. IEEE Trans on Signal Processing, 57: 1768-1782, 2009.
[31] V. Lucarini, Three-dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes. Journal of Statistical Physics, 134 (l): 185-206, 2009.
[32] S. R. Marschner and R. J. Lobb, An evaluation of reconstruction filters for volume rendering. In Proc. of the IEEE Conf. on Visualization 1994, pages 100-107.IEEE Computer Society Press, Oct. 1994.
[33] T. Meng, B. Smith, A. Entezari, A. E. Kirkpatrick, D. Weiskopf, L. Kalantari, and T. Moller, On visual quality of optimal 3D sampling and reconstruction. In Graphics Interface 2007, May 2007.
[34] M. Mirzargar and A. Entezari, Voronoi splines. Signal Processing, IEEE Transactions on, 58 (9): 4572 -4582, 2010.
[35] D. P. Mtchell and A. N. Netravali, Reconstruction filters in computer graphics. In Computer Graphics (Proceedings of SIGGRAPH 88), volume 22: 4, pages 221-228, aug 1988.
[36] H. Miyakawa, Sampling theorem of stationary stochastic variables in multidimensional space. Journal of the Institute of Electronic and Communication Engineers of Japan, 42: 421-427, 1959.
[37] T. Moller, R. Machiraju, K. Mueller, and R. Yagel, A comparison of normal estimation schemes. In Proceedings of the IEEE Conference on Visualization 1997, pages 19-26, Oct. 1997.
[38] D. P. Petersen and D. Middleton, Sampling and reconstruction of wave-number-limited functions in N-dimensional Euclidean spaces. Information and Control, 5 (4): 279-323, Dec. 1962.
[39] K. Petkov, F. Qiu, Z. Fan, A. E. Kaufman, and K. Mueller, Efficient lbm visual simulation on face-centered cubic lattices. IEEE Trans. Vis. Comput. Graph., 15 (5): 802-814, 2009.
[40] F. Qiu, F. Xu, Z. Fan, N. Neophytos, A. Kaufman, and K. Mueller, Lattice-based volumetric global illumination. IEEE Trans. Vis. Comput. Graph., 13 (6): 1576-1583, 2007.
[41] M. Saranathan, V. Ramanan, R. Gulati, and R. Venkatesan, ANTHEM: anatomically tailored hexagonal MRI. Magnetic Resonance Imaging, 25 (7): 1039-1047, 2007.
[42] M. Senechal, Quasicrystals and Geometry. Camb. Univ. Press, 1995.
[43] T. Theußl, O. Mattausch, T. Moller, and E. Groller, Reconstruction schemes for high quality raycasting of the body-centered cubic grid. TR-186-2-02-11, Institute of Computer Graphics and Algorithms, Vienna University of Technology, December 2002.
[44] T. TheuBl, T. Moller, and E. Groller, Optimal regular volume sampling. In Proc of the IEEE Conf on Visualization 2001, pages 91-98, Oct. 2001.
[45] P. Thevenaz, T. Blu, and M. Unser, Interpolation revisited. IEEE Transactions on Medical Imaging, 19 (7): 739-758, July 2000.
[46] P. Vaidyanathan, Multirate Systems and Filter Banks. Signal Processing. Prentice Hall, Englewood Cliffs, New Jersey 07632, 1993.
[47] D. Van De Ville, T. Blu, M. Unser, W. Philips, I. Lemahieu, and R. Van de Walle, Hex-splines: A novel spline family for hexagonal lattices. IEEE Transactions on Image Processing, 13 (6): 758-772, June 2004.
[48] P. Wells, R. Smith, and G. B. Suparta, Sampling the sinogram in computed tomography. A Back to Basics article in Materials Evaluation, 55 (7): 772-776, July 1997.
[49] J. Wood and P. Fisher, Assessing interpolation accuracy in elevation models. Computer Graphics and Applications, IEEE, 13 (2): 48–56, Mar 1993.
30 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool