The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2011 vol.17)
pp: 1812-1821
Tim Kroeger , Fraunhofer MEVIS / CeVis, University of Bremen
Christian Rieder , Fraunhofer MEVIS
Horst K. Hahn , Fraunhofer MEVIS / Jacobs University Bremen
ABSTRACT
Percutaneous radiofrequency ablation (RFA) is becoming a standard minimally invasive clinical procedure for the treatment of liver tumors. However, planning the applicator placement such that the malignant tissue is completely destroyed, is a demanding task that requires considerable experience. In this work, we present a fast GPU-based real-time approximation of the ablation zone incorporating the cooling effect of liver vessels. Weighted distance fields of varying RF applicator types are derived from complex numerical simulations to allow a fast estimation of the ablation zone. Furthermore, the heat-sink effect of the cooling blood flow close to the applicator's electrode is estimated by means of a preprocessed thermal equilibrium representation of the liver parenchyma and blood vessels. Utilizing the graphics card, the weighted distance field incorporating the cooling blood flow is calculated using a modular shader framework, which facilitates the real-time visualization of the ablation zone in projected slice views and in volume rendering. The proposed methods are integrated in our software assistant prototype for planning RFA therapy. The software allows the physician to interactively place virtual RF applicator models. The real-time visualization of the corresponding approximated ablation zone facilitates interactive evaluation of the tumor coverage in order to optimize the applicator's placement such that all cancer cells are destroyed by the ablation.
INDEX TERMS
Radiofrequency ablation, ablation zone visualization, distance field, volume rendering, GPU, interaction.
CITATION
Tim Kroeger, Christian Rieder, Horst K. Hahn, "GPU-based Real-Time Approximation of the Ablation Zone for Radiofrequency Ablation", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 12, pp. 1812-1821, Dec. 2011, doi:10.1109/TVCG.2011.207
REFERENCES
[1] S. Arrhenius, Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem, 4: 226 – 248, 1889.
[2] E. Berjano, Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future. BioMed Eng OnLine, 5 (1): 24, 2006.
[3] T. Butz, S. Warfield, K. Tuncali, S. Silverman, E. van Sonnenberg, F. Jolesz, and R. Kikinis, Pre- and intra-operative planning and simulation of percutaneous tumor ablation, Jan 2000.
[4] T. de Baere, A. Denys, B. J. Wood, N. Lassau, M. Kardache, V. Vilgrain, Y. Menu, and A. Roche, Radiofrequency liver ablation: experimental comparative study of water-cooled versus expandable systems. AJR Am J Roentgenol, 176 (1): 187– 92, Jan 2001.
[5] P. Deuflhard and R. Hochmuth, Multiscale analysis of thermoregulation in the human microcascular system. Mathematical Methods in the Applied Sciences, 27 (8): 971– 989, 2004.
[6] L. R. Dice, Measures of the Amount of Ecologic Association Between Species. Ecology, 26 (3): 297–302, 1945.
[7] S. Garrean, J. Hering, A. Saied, W. Helton, and N. Espat, Radiofrequency ablation of primary and metastatic liver tumors: a critical review of the literature. Am J Surg, 195: 508 – 520, Jan 2008.
[8] M. Hadwiger, J. M. Kniss, C. Rezk-salama, D. Weiskopf, and K. Engel, Real-Time Volume Graphics. A. K. Peters, Ltd., Natick, MA, USA, 2006.
[9] M. Jones, J. Baerentzen, and M. Sramek, 3D Distance Fields: A Survey of Techniques and Applications. Visualization and Computer Graphics, IEEE Transactions on, 12 (4): 581 – 599, 2006.
[10] T. Kröger, I. Altrogge, T. Preusser, P. Pereira, D. Schmidt, A. Weihusen, and H. Peitgen, Numerical simulation of radio frequency ablation with state dependent material parameters in three space dimensions. Proceedings of MICCAI, 4191: 380–388, 2006.
[11] T. Kröger, T. Pätz, I. Altrogge, A. Schenk, K. S. Lehmann, B. B. Frericks, J.-P. P, H.-O. Peitgen, and T. Preusser, Fast estimation of the vascular cooling in rfa based on numerical simulation. The Open Biomedical Engineering Journal, pages 1–11, Mar 2009.
[12] K. Lehmann, J. Ritz, S. Valdeig, V. Knappe, A. Schenk, A. Weihusen, C. Rieder, C. Holmer, U. Zurbuchen, P. Hoffmann, H. Peitgen, H. Buhr, and B. Frericks, Ex situ quantification of the cooling effect of liver vessels on radiofrequency ablation. Langenbeck's Archives of Surgery, 394: 475 – 481, 2009. 10.1007/s00423 – 009 – 0480 –1.
[13] A. Littmann, A. Schenk, B. Preim, G. Prause, K. Lehmann et al. , Planning of anatomical resections and in situ ablations in oncologic liver surgery. International Congress Series, Jan 2003.
[14] E. McCreedy, R. Cheng, P. Hemler, A. Viswanathan, B. Wood, and M. McAuliffe, Radio frequency ablation registration, segmentation, and fusion tool. Information Technology in Biomedicine, IEEE Transactions on, 10 (3): 490 – 496, Jul 2006.
[15] J. L. Mitchell, C. Brennan, and D. Card, Real-time image-space outlining for non-photorealistic rendering. In ACM SIGGRAPH 2002 conference abstracts and applications, SIGGRAPH '02, pages 239 – 239, New York, NY, USA, 2002. ACM.
[16] J. Moltz, L. Bornemann, J.-M. Kuhnigk, V. Dicken, E. Peitgen, S. Meier, H. Bolte, M. Fabel, H.-C. C, M. Hittinger, A. Kiessling, M. Pusken, and H.-O. Peitgen, Advanced Segmentation Techniques for Lung Nodules, Liver Metastases, and Enlarged Lymph Nodes in CT Scans. Selected Topics in Signal Processing, IEEE Journal of, 3 (1): 122– 134, 2009.
[17] S. Mulier, Y. Ni, L. Frich, F. Burdio, A. L. Denys, J.-F. D. Wispelaere, B. Dupas, N. Habib, M. Hoey, M. C. Jansen, M. Lacrosse, R. Leveillee, Y. Miao, P. Mulier, D. Mutter, K. K. Ng, R. Santambrogio, D. Stippel, K. Tamaki, T. M. van Gulik, G. Marchal, and L. Michel, Experimental and Clinical Radiofrequency Ablation: Proposal for Standardized Description of Coagulation Size and Geometry. Ann Surg Oncol, 14 (4): 1381–96, Apr 2007.
[18] S. Mulier, Y. Ni, J. Jamart, L. Michel, G. Marchal, and T. Ruers, Radiofrequency Ablation Versus Resection for Resectable Colorectal Liver Metastases: Time for a Randomized Trial? Ann Surg Oncol, 15 (1): 144– 57, Jan 2008.
[19] J. A. Nelder and R. Mead, A Simplex Method for Function Minimization. The Computer Journal, 7 (4): 308 – 313, Jan. 1965.
[20] H. H. Pennes, Analysis of tissue and arterial blood temperatures in a resting forearm. J. Appl. Physiol., 1: 93 –122, 1948.
[21] J.-S. Praßni, T. Ropinski, and K. H. Hinrichs, Uncertainty-aware guided volume segmentation. IEEE Transactions on Visualization and Computer Graphics (TVCG) (Vis Conference Issue), 16 (6): 1358–1365, nov, dec 2010.
[22] P. Rheingans and D. Ebert, Volume Illustration: Nonphotorealistic Rendering of Volume Models. Visualization and Computer Graphics, IEEE Transactions on, 7 (3): 253 – 264, Jul 2001.
[23] C. Rieder, I. Altrogge, T. Kröger, S. Zidowitz, and T. Preusser, Interactive Approximation of the Ablation Zone incorporating Heatsink Effects for Radiofrequency Ablation. Proc. of CURAC, pages 9–12, 2010.
[24] C. Rieder, S. Palmer, F. Link, and H. K. Hahn, A Shader Framework for Rapid Prototyping of GPU-Based Volume Rendering. Computer Graphics Forum (Special Issue on Eurographics Symposium on Visualization), 30 (3): 1031–1040.
[25] C. Rieder, M. Schwier, A. Weihusen, S. Zidowitz, and H.-O. Peitgen, Visualization of risk structures for interactive planning of image guided radiofrequency ablation of liver tumors. Proceedings of SPIE Medical Imaging, Jan 2009.
[26] G. Rote, Computing the minimum hausdorff distance between two point sets on a line under translation. Inf. Process. Lett., 38: 123–127, May 1991.
[27] E. Samset, T. Mala, L. Aurdal, and I. Balasingham, Intra-operative visualisation of 3d temperature maps and 3d navigation during tissue cryoab-lation. Computerized Medical Imaging and Graphics, 29 (6): 499–505, 2005.
[28] C. Schumann, C. Rieder, J. Bieberstein, A. Weihusen, S. Zidowitz, J.-H. H, and T. Preusser, State of the art in computer-assisted planning, intervention and assessment of liver tumor ablation. In Critical Reviews™ in Biomedical Engineering (Special Issue on Thermal Tumor Ablation), volume 38, pages 31– 52, 50 Cross Highway 50 Cross Highway, Redding, CT 06896, 2010. begell house, inc.
[29] U. Tiede, T. Schiemann, and K. Hohne, High quality rendering of attributed volume data. Visualization '98. Proceedings, pages 255 – 262, 1998.
[30] C. Tietjen, B. Meyer, S. Schlechtweg, B. Preim, I. Hertel, and G. Strauβ, Enhancing slice-based visualizations of medical volume data. IEEE/Eurographics Symposium on Visualization (EuroVis), pages 123– 130, 2006.
[31] K. Trovato, S. Dalal, J. Krcker, A. Venkatesan, and B. J. Wood, Automated rfa planning for complete coverage of large tumors. In Proc SPIE Medical Imaging, volume 7261, pages 72610D.1–72610D.7, 2009.
[32] C. Villard, L. Soler, and A. Gangi, Radiofrequency ablation of hepatic tumors: simulation, planning, and contribution of virtual reality and haptics. Comp. Methods in Biomechanics & Biomedical Eng., 8 (4): 215–227, 2005.
[33] C. Villard, L. Soler, N. Papier, V. Agnus, S. Thery, A. Gangi, D. Mutter, and J. Marescaux, Virtual radiofrequency ablation of liver tumors, Jan 2003.
[34] A. Weihusen, L. Hinrichsen, T. Carus, R. Dammer, R. Rascher-Friesenhausen, T. Kröger, H. Peitgen, and T. Preusser, Towards a verified simulation model for radiofrequency ablations. Information Processing in Computer-Assisted Interventions, pages 179 –189, 2010.
[35] A. Weihusen, F. Ritter, T. Kröger, T. Preusser, S. Zidowitz, and H.-O. Peitgen, Workflow oriented software support for image guided radiofre-quency ablation of focal liver malignancies. Proceedings of SPIE, Jan 2007.
[36] W. Zhai, J. Xu, Y. Zhao, Y. Song, L. Sheng, and P. Jia, Preoperative surgery planning for percutaneous hepatic microwave ablation. MICCAI, (LNCS 5242): 569–577, Jul 2008.
[37] S. Zidowitz, H. Drexl, T. Kröger, T. Preusser, F. Ritter, A. Weihusen, and H.-O. Peitgen, Baysian Vessel Extraction for Planning of RF-Ablation. Bildverarbeitung für die Medizin, pages 187–191, 2007.
24 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool