
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Xavier Tricoche, Christoph Garth, Allen Sanderson, "Visualization of Topological Structures in AreaPreserving Maps," IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 17651774, Dec., 2011.  
BibTex  x  
@article{ 10.1109/TVCG.2011.254, author = {Xavier Tricoche and Christoph Garth and Allen Sanderson}, title = {Visualization of Topological Structures in AreaPreserving Maps}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, number = {12}, issn = {10772626}, year = {2011}, pages = {17651774}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.254}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Visualization of Topological Structures in AreaPreserving Maps IS  12 SN  10772626 SP1765 EP1774 EPD  17651774 A1  Xavier Tricoche, A1  Christoph Garth, A1  Allen Sanderson, PY  2011 KW  Poincaré map KW  dynamical systems KW  topology KW  chaos KW  areapreserving maps KW  invariant manifolds. VL  17 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] A. A. Andronov, Qualitative Theory of SecondOrder Dynamic Systems. John Wiley & Sons, 1973.
[2] V. I. Arnold, Proof of A. N. Kolmogorov's thereom on the preservation of quasiperiodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv., 18 (5): 9, 1963.
[3] A. Bagherjeiran and C. Kamath, Graphbased methods for orbit classification. In Proc. of Sixth SIAM International Conference on Data Mining, April 2006.
[4] H. Battke, D. Stalling, and H.C. Hege, Fast line integral convolution for arbitrary surfaces in 3d. In S.Berlin, editor, Visualization and Mathematics, pages 181–195, 1997.
[5] P.T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, A topological hierarchy for functions on triangulated surfaces. IEEE Trans. Vis. Comput. Graph., 10 (4): 385–396, 2004.
[6] R. L. Burden and J. D. Faires, Numerical Analysis. PWSKent, Boston, 1993.
[7] B. Cabral and L. Leedom, Imaging vector fields using line integral convolution. Computer Graphics (SIGGRAPH '93 Proceedings), 27 (4): 263– 272, 1993.
[8] T. Delmarcelle and L. Hesselink, The topology of symmetric, secondorder tensor fields. In Proceedings of IEEE Visualization 1994, pages 140–147. IEEE Computer Society Press, 1994.
[9] J. England, B. Krauskopf, and H. Osinga, Computing onedimensional global manifolds of Poincar maps by continuation. SIAM Journal of Applied Dynamical Systems, 4 (4): 1008–1041, 2005.
[10] C. Garth, X. Tricoche, and G. Scheuermann, Tracking of vector field singularities in unstructured 3D timedependent data sets. In Proceedings of IEEE Visualization 2004, pages 329–226, 2004.
[11] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. SpringerVerlag, 1983.
[12] A. Gyulassy, V. Natarajan, V. Pascucci, P.T. Bremer, and B. Hamann, Topologybased simplification for feature extraction from 3d scalar fields. In Proc. IEEE Visualization 2005, pages 275–280, 2005.
[13] A. Gyulassy, V. Natarajan, V. Pascucci, P.T. Bremer, and B. Hamann, A topological approach to simplification of threedimensional scalar functions. IEEE Trans. Vis. Comput. Graph., 12 (4): 474–484, 2006.
[14] A. Gyulassy, L. G. Nonato, P.T. Bremer, C. T. Silva, and V. Pascucci, Robust topologybased multiscale analysis of scientific data. Computing in Science and Engineering, 11 (5): 88–95, 2009.
[15] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. SpringerVerlag, 2006.
[16] G. Haller, Distinguished material surfaces and coherent structures in threedimensional flows. Physica D, 149: 248–277, 2001.
[17] H. Hauser, H. Hagen, and H. Theisel, Topology Based Methods in Visualization. Springer, 2007.
[18] H.C. Hege, K. Polthier, and G. Scheuermann, Topology Based Methods in Visualization II. Springer, 2009.
[19] J. Helman and L. Hesselink, Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications, 11 (3): 36–46, 1991.
[20] J. L. Helman and L. Hesselink, Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications, 11 (3): 36–46, May 1991.
[21] A. N. Kolmogorov, On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian. Dokl. Akad. Nauk. SSR, 98: 469, 1954.
[22] A. Lichtenberg and M. Lieberman, Regular and Stochastic Motion. Applied Mathematical Sciences. Springer Verlag, 1983.
[23] A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, 2nd ed. SpringerVerlag, New York, 1992.
[24] H. Löffelmann, H. Doleisch, and E. Gröller, Visualizing dynamical systems near critical points. In 14th Spring Conference on Computer Graphics, pages 175–184, 1998.
[25] H. Löffelmann and E. Gröller, Enhancing the visualization of characteristic structures in dynamical systems. In Visualization in Scientific Computing '98, pages 59–68, 1998.
[26] H. Löffelmann, T. Kucera, and E. Gröller, Visualizing Poincar maps together with the underlying flow. In H.C. Hege, and K. Polthier editors, , Mathematical Visualization: Proceedings of the International Workshop on Visualization and Mathematics '97, pages 315–328. Springer, 1997.
[27] S. Mann and A. Rockwood, Computing singularities of 3d vector fields with geometric algebra. In IEEE Visualization Proceedings '03, 2003.
[28] J. Marsden and M. West, Discrete Mechanics and Variational Integrators. Acta Numerica, 2001.
[29] J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry. Texts in Applied Mathematics vol. 17. SpringerVerlag, 2003.
[30] J. Moser, On invariant curves of areapreserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. II 1,1, Kl (1): 1, 1962.
[31] I. Niven, Irrational Numbers. The mathematical association of America, 1956.
[32] A. Okada and D. L. Kao, Enhanced line integral convolution with flow feature detection. In Proceedings of IS&T/SPIE Electronic Imaging, 1997.
[33] R. Peikert and F. Sadlo, Visualization Methods for Vortex Rings and Vortex Breakdown Bubbles. In A.Y.K. Museth, T. Möller editor, Proceedings of the 9th Eurographics/IEEE VGTC Symposium on Visualization (EuroVis'07), pages 211–218, May 2007.
[34] R. Peikert, and F. Sadlo, Flow Topology Beyond Skeletons: Visualization of Features in Recirculating Flow. In H.C. Hege, K. Polthier, and G. Scheuermann editors, TopologyBased Methods in Visualization II, pages 145–160. Springer, 2008.
[35] P. J. Prince, and J. R. Dormand, High order embedded rungekutta formulae. Journal of Computational and Applied Mathematics, 7 (1), 1981.
[36] A. Sanderson, G. Chen, X. Tricoche, D. Pugmire, S. Kruger, and J. Breslau, Analysis of recurrent patterns in toroidal magnetic fields. IEEE Transactions on Visualization and Computer Graphics, 16 (6): 1431– 1440, 2010.
[37] A. Sanderson, X. Tricoche, C. Garth, S. Kruger, C. Sovinec, E. Held, and J. Breslau, Poster: A geometric approach to visualizing patterns in the Poincar plot of a magnetic field. In Proc. of IEEE Visualization 06 Conference, 2006.
[38] G. Scheuermann, H. Krger , M. Menzel, and A. P Rockwood, Visualizing nonlinear vector field topology. IEEE Trans. Vis. Comput. Graph., 4 (2): 109–116, 1998.
[39] C. R. Sovinec, T. A. Gianakon, E. D. Held, S. E. Kruger, and D. D. Schnack, Nimrod: A computational laboratory for studying nonlinear fusion magnetohydrodynamics. Phys. Plasmas, 10 (5): 1727, 2003.
[40] H. Theisel and H.P. Seidel, Feature flow fields. In Proceedings of Joint Eurographics  IEEE TCVG Symposium on Visualization (VisSym '03), pages 141 – 148. ACM, 2003.
[41] H. Theisel, T. Weinkauf, H.C. Hege, and H.P. Seidel, Saddle connectors  an approach to visualizing the topological skeleton of complex 3d vector fields. In IEEE Visualization '03, 2003.
[42] H. Theisel, T. Weinkauf, H.C. Hege, and H.P. Seidel, Stream line and path line oriented topology. In Proceedings of IEEE Visualization '04 Conference, pages 321–328, 2004.
[43] X. Tricoche, C. Garth, and A. Sanderson, Visualizing invariant manifolds in areapreserving maps. In Proceedings of the TopologyBased Methods in Visualization 2011, 2011 (to appear).
[44] X. Tricoche, G. Scheuermann, and H. Hagen, A topology simplification method for 2D vector fields. In Proceedings of IEEE Visualization 2000, pages 359–366, 2000.
[45] X. Tricoche, T. Wischgoll, G. Scheuermannn, and H. Hagen, Topology tracking for the visualization of timedependent twodimensional flows. Computer and Graphics, 26: 249–257, 2002.
[46] G. Weber, P.T. Bremer, and V. Pascucci, Topological landscapes: A terrain metaphor for scientific data. IEEE Transactions on Visualization and Computer Graphics, 13 (6): 1416–1423, 2007.
[47] T. Weinkauf, H. Theisel, H.C. Hege, and H.P. Seidel, Boundary switch connectors for topological visualization of complex 3d vector fields. In O. Deussen, C. Hansen, D. A. Keim, and D. Saupe editors, VisSym 2004 : Joint Eurographics/IEEE Symposium on Visualization, pages 183–192, Konstanz, Germany, 2004. Eurographics.
[48] T. Weinkauf, H. Theisel, H.C. Hege, and H.P. Seidel, Topological structures in twoparameterdependent 2D vector fields. Computer Graphics Forum, 25 (3): 607–616, September 2006. Eurographics 2006, Vienna, Austria, September 04  08.
[49] K. M.K. Yip, KAM: A System for Intelligently Guiding Numerical Experimentation by Computer. MIT Press, 1992.
[50] E. Zhang, H. Yeh, Z. Lin, and R. Laramee, Asymmetric tensor analysis for flow visualization. IEEE Transactions on Visualization and Computer Graphics, 15 (1): 106–122, 2009.
[51] X. Zheng and A. Pang, 2d asymmetric tensor analysis. In Proc. of IEEE Visualization 2005, pages3–10. IEEE Computer Society Press, Oct. 2005.
[52] X. Zheng, B. Parlett, and A. Pang, Topological lines in 3D tensor fields and discriminant hessian factorization. IEEE Transactions on Visualization and Computer Graphics, 11 (4): 395–407, 2005.