This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Partwise Cross-Parameterization via Nonregular Convex Hull Domains
October 2011 (vol. 17 no. 10)
pp. 1531-1544
Huai-Yu Wu, Peking University, Beijing and Chinese Academy of Sciences, Beijing
Chunhong Pan, Chinese Academy of Sciences, Beijing
Hongbin Zha, Peking University, Beijing
Qing Yang, Chinese Academy of Sciences, Beijing
Songde Ma, Chinese Academy of Sciences, Beijing
In this paper, we propose a novel partwise framework for cross-parameterization between 3D mesh models. Unlike most existing methods that use regular parameterization domains, our framework uses nonregular approximation domains to build the cross-parameterization. Once the nonregular approximation domains are constructed for 3D models, different (and complex) input shapes are transformed into similar (and simple) shapes, thus facilitating the cross-parameterization process. Specifically, a novel nonregular domain, the convex hull, is adopted to build shape correspondence. We first construct convex hulls for each part of the segmented model, and then adopt our convex-hull cross-parameterization method to generate compatible meshes. Our method exploits properties of the convex hull, e.g., good approximation ability and linear convex representation for interior vertices. After building an initial cross-parameterization via convex-hull domains, we use compatible remeshing algorithms to achieve an accurate approximation of the target geometry and to ensure a complete surface matching. Experimental results show that the compatible meshes constructed are well suited for shape blending and other geometric applications.

[1] B. Allen, B. Curless, and Z. Popović, “The Space of Human Body Shapes: Reconstruction and Parameterization from Range Scans,” Proc. SIGGRAPH, pp. 587-594, 2003.
[2] V. Kraevoy and A. Sheffer, “Cross-Parameterization and Compatible Remeshing of 3D Models,” Proc. SIGGRAPH, pp. 861-869, 2004.
[3] E. Praun, W. Sweldens, and P. Schröder, “Consistent Mesh Parameterizations,” Proc. SIGGRAPH, pp. 179-184, 2001.
[4] S. Shlafman, A. Tal, and S. Katz, “Metamorphosis of Polyhedral Surfaces Using Decomposition,” Eurographics, vol. 21, no. 3, pp. 219-228, 2002.
[5] E. Praun and H. Hoppe, “Spherical Parametrization and Remeshing,” Proc. SIGGRAPH, pp. 340-349, 2003.
[6] J. Pan, H.-Y. Wu, C. Pan, and Q. Yang, “A Novel Scheme for Efficient Cross-Parameterization,” Proc. Conf. Computer Graphics Int'l (CGI), 2007.
[7] H.-Y. Wu, C. Pan, Q. Yang, and S. Ma, “Consistent Correspondence between Arbitrary Manifold Surfaces,” Proc. Int'l Conf. Computer Vision (ICCV), 2007.
[8] Y. Lipman and T. Funkhouser, “Möbius Voting for Surface Correspondence,” Proc. SIGGRAPH, vol. 28, no. 3, 2009.
[9] H. Zhang, A. Sheffer, D. Cohen-Or, Q. Zhou, O. van Kaick, and A. Tagliasacchi, “Deformation-Driven Shape Correspondence,” Computer Graphics Forum, vol. 27, no. 5, pp. 1431-1439, 2008.
[10] A.M. Bronstein, M.M. Bronstein, R. Kimmel, M. Mahmoudi, and G. Sapiro, “A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-Rigid Shape Matching,” Int'l J. Computer Vision, vol. 89, pp. 266-286, 2009.
[11] M.R. Ruggeri, G. Patane, M. Spagnuolo, and D. Saupe, “Spectral-Driven Isometry-Invariant Matching of 3D Shapes,” Int'l J. Computer Vision, vol. 89, pp. 248-265, 2009.
[12] L. Zhang, L. Liu, Z. Ji, and G. Wang, “Manifold Parameterization,” Proc. Computer Graphics Int'l Conf., pp. 160-171, 2006.
[13] J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe, “Inter-Surface Mapping,” Proc. SIGGRAPH, pp. 870-877, 2004.
[14] D. Ghosh, A. Sharf, and N. Amenta, “Feature-Driven Deformation for Dense Correspondence,” Proc. SPIE Medical Imaging, pp. 36-40, 2009.
[15] Q.-X. Huang, B. Adams, M. Wicke, and L.J. Guibas, “Non-Rigid Registration under Isometric Deformations,” Computer Graphics Forum, vol. 27, no. 5, pp. 1449-1457, 2008.
[16] O. van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or, “A Survey on Shape Correspondence,” Proc. Eurographics State-of-The-Art Report (STAR), 2010.
[17] M. Alexa, “Recent Advances in Mesh Morphing,” Computer Graphics Forum, vol. 21, no. 2, pp. 173-196, 2002.
[18] M.S. Floater, “Mean Value Coordinates,” Computer Aided Geometric Design, vol. 20, no. 1, pp. 19-27, 2003.
[19] J.L. Lin, J.H. Chuang, C.C. Lin, and C.C. Chen, “Consistent Parameterization by Quinary Subdivision for Remeshing and Mesh Metamorphosis,” Proc. Int'l Conf. Computer Graphics and Interactive (GRAPHITE '03), pp. 151-158, 2003.
[20] R.W. Sumner and J. Popović, “Deformation Transfer for Triangle Meshes,” Proc. SIGGRAPH, pp. 399-405, 2004.
[21] D.D. Hoffman and W.A. Richards, “Parts of Recognition,” Cognition, vol. 18, pp. 65-96, 1984.
[22] R.M. Rustamov, “Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation,” Proc. Eurographics Symp. Geometry Processing, pp. 225-233, 2007.
[23] H.-Y. Wu, H. Zha, T. Luo, X.-L. Wang, and S. Ma, “Global and Local Isometry-Invariant Descriptor for 3D Shape Comparison and Partial Matching,” Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2010.
[24] J.-M. Lien and N.M. Amato, “Approximate Convex Decomposition of Polyhedra and its Applications,” Computer Aided Geometric Design, vol. 25, no. 7, pp. 503-522, 2008.
[25] B. Chazelle, D.P. Dobkin, N. Shouraboura, and A. Tal, “Strategies for Polyhedral Surface Decomposition: An Experimental Study,” Computational Geometry: Theory and Applications, vol. 7, pp. 327-342, 1997.
[26] A.P. Mangan and R.T. Whitaker, “Partitioning 3D Surface Meshes Using Watershed Segmentation,” IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 4, pp. 308-321, Oct.-Dec. 1999.
[27] S. Katz, G. Leifman, and A. Tal, “Mesh Segmentation Using Feature Point and Core Extraction,” The Visual Computer, vol. 21, nos. 8-10, pp. 649-658, 2005.
[28] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H.-P. Seidel, “Mesh Scissoring with Minima Rule and Part Salience,” Computer Aided Geometric Design, vol. 22, no. 5, pp. 444-465, 2005.
[29] L. Shapira, A. Shamir, and D. Cohen-Or, “Consistent Mesh Partitioning and Skeletonisation Using the Shape Diameter Function,” The Visual Computer, vol. 24, no. 4, pp. 249-259, 2008.
[30] A. Golovinskiy and T.A. Funkhouser, “Consistent Segmentation of 3D Models,” Int'l Conf. Shape Modeling and Int'l (SMI), pp. 262-269, 2009.
[31] Y. Zheng and C.-L. Tai, “Mech Decomposition with Cross-Boundary Brushes,” Proc. Eurographics, vol. 29, no. 2, 2010.
[32] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: A Sketching Interface for 3D Freeform Design,” Proc. SIGGRAPH, pp. 409-416, 1999.
[33] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal, S. Rusinkiewicz, and D. Dobkin, “Modeling by Example,” ACM Trans. Graphics-Proc. ACM SIGGRAPH, vol. 23, no. 3, pp. 652-663, Aug. 2004.
[34] H.-Y. Wu, C. Pan, J. Pan, Q. Yang, and S. Ma, “A Sketch-Based Interactive Framework for Real-Time Mesh Segmentation,” Proc. Conf. Computer Graphics Int'l (CGI), 2007.
[35] O.S. Andrew Nealen, T. Igarashi, and M. Alexa, “Fibermesh: Designing Freeform Surfaces with 3D Curves,” Proc. SIGGRAPH, vol. 26, no. 3, 2007.
[36] Z. Ji, L. Liu, Z. Chen, and G. Wang, “Easy Mesh Cutting,” Eurographics, vol. 25, pp. 283-291, 2006.
[37] G. Taubin, “Estimating the Tensor of Curvature of a Surface from a Polyhedral Approximation,” Int'l Conf. Computer Vision (ICCV), pp. 902-907, 1995.
[38] M. Meyer, M. Desbrun, P. Schroder, and A.H. Barr, “Discrete Differential-Geometry Operators for Triangulated 2-Manifolds,” Visualization and Mathematics III, pp. 35-57, Springer, 2003.
[39] H. Pottmann, T. Steiner, M. Hofer, C. Haider, and A. Hanbury, “The Isophotic Metric and Its Application to Feature Sensitive Morphology on Surfaces,” European Conf. Computer Vision (ECCV), pp. 560-572, 2004.
[40] I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder, “Normal Meshes,” Proc. SIGGRAPH, pp. 95-102, 2000.
[41] O. Sorkine, “Differential Representations for Mesh Processing,” Computer Graphics Forum, vol. 25, no. 4, pp. 789-807, 2006.
[42] V. Kraevoy, D. Julius, and A. Sheffer, “Model Composition from Interchangeable Components,” Proc. Pacific Conf. Computer Graphics and Applications, 2007.
[43] S. Toledo, “Taucs: A Library of Sparse Linear Solvers, Version 2.2,” Tel Aviv Univ., http://www.tau.ac.il/stoledotaucs/, Sept. 2003.
[44] T. Ju, S. Schaefer, and J. Warren, “Mean Value Coordinates for Closed Triangular Meshes,” Proc. SIGGRAPH, pp. 561-566, 2005.
[45] R. Gal and D. Cohen-Or, “Salient Geometric Features for Partial Shape Matching and Similarity,” Proc. SIGGRAPH, pp. 130-150, 2006.
[46] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel, “Interactive Multi-Resolution Modeling on Arbitrary Meshes,” Proc. ACM SIGGRAPH, pp. 105-114, 1998.
[47] R. Zayer, C. Rossl, Z. Karni, and H.-P. Seidel, “Harmonic Guidance for Surface Deformation,” Proc. Ann. Conf. European Assoc. for Computer Graphics (Eurographics), pp. 601-609, 2005.
[48] H.-Y. Wu, C. Pan, H. Zha, and S. Ma, “Model Transduction for Triangle Meshes,” J. Computer Science and Technology , vol. 25, no. 3, pp. 584-595, 2010.
[49] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: Measuring Error on Simplified Surfaces,” Computer Graphics Forum, vol. 17, no. 2, pp. 167-174, 1998.

Index Terms:
Cross-parameterization, nonregular approximation domains, convex hull, critical points, compatible remeshing, sketch-based segmentation.
Citation:
Huai-Yu Wu, Chunhong Pan, Hongbin Zha, Qing Yang, Songde Ma, "Partwise Cross-Parameterization via Nonregular Convex Hull Domains," IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 10, pp. 1531-1544, Oct. 2011, doi:10.1109/TVCG.2010.231
Usage of this product signifies your acceptance of the Terms of Use.