The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.10 - October (2011 vol.17)
pp: 1510-1520
Daniele Panozzo , University of Genoa, Genoa
Enrico Puppo , University of Genoa, Genoa
Marco Tarini , University of Insubria, Varese
Nico Pietroni , ISTI-CNR, Pisa
Paolo Cignoni , ISTI-CNR, Pisa
ABSTRACT
We present an automatic method to produce a Catmull-Clark subdivision surface that fits a given input mesh. Its control mesh is coarse and adaptive, and it is obtained by simplifying an initial mesh at high resolution. Simplification occurs progressively via local operators and addresses both quality of surface and faithfulness to the input shape throughout the whole process. The method is robust and performs well on rather complex shapes. Displacement mapping or normal mapping can be applied to approximate the input shape arbitrarily well.
INDEX TERMS
Quadrilateral meshes, subdivision surfaces, displacement mapping, mesh compression.
CITATION
Daniele Panozzo, Enrico Puppo, Marco Tarini, Nico Pietroni, Paolo Cignoni, "Automatic Construction of Quad-Based Subdivision Surfaces Using Fitmaps", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 10, pp. 1510-1520, October 2011, doi:10.1109/TVCG.2011.28
REFERENCES
[1] C. Loop and S. Schaefer, “Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches,” ACM Trans. Graphics, vol. 27, no. 1, pp. 1-11, 2008.
[2] K. Gee, “Direct3d 11 Tessellation,” Proc. GameFest—Microsoft Game Technology Conf., 2008.
[3] C. Eisenacher, Q. Meyer, and C. Loop, “Real-Time View-Dependent Rendering of Parametric Surfaces,” I3D '09: Proc. Symp. Interactive 3D Graphics and Games, pp. 137-143, 2009.
[4] I. Castaño, “Next-Generation Hardware Rendering of Displaced Subdivision Surfaces,” SIGGR2008—Exhibitor Tech Ses., 2008.
[5] D. Bommes, H. Zimmer, and L. Kobbelt, “Mixed-Integer Quadrangulation,” ACM Trans. Graphics, vol. 28, no. 3, pp. 1-10, 2009.
[6] N. Ray, W.C. Li, B. Lévy, A. Sheffer, and P. Alliez, “Periodic Global Parameterization,” ACM Trans. Graphics, vol. 25, no. 4, pp. 1460-1485, 2006.
[7] D. Cohen-Steiner, P. Alliez, and M. Desbrun, “Variational Shape Approximation,” Proc. ACM SIGGRAPH, pp. 905-914, 2004.
[8] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J.C. Hart, “Spectral Surface Quadrangulation,” ACM Trans. Graphics, vol. 25, no. 3, pp. 1057-1066, 2006.
[9] F. Kälberer, M. Nieser, and K. Polthier, “Quadcover Surface Parameterization Using Branched Coverings,” Computer Graphics Forum, vol. 26, no. 3, pp. 375-384, 2007.
[10] E. Catmull and J. Clark, “Recursively Generated B-Spline Surfaces on Arbitrary Topological Meshes,” Computer Aided Design, vol. 10, pp. 350-355, 1978.
[11] A. Lee, H. Moreton, and H. Hoppe, “Displaced Subdivision Surfaces,” Proc. ACM SIGGRAPH, pp. 85-94, 2000.
[12] A. Myles, N. Pietroni, D. Kovacs, and D. Zorin, “Feature-Aligned T-Meshes,” ACM Trans. Graphics, vol. 29, no. 4, pp. 1-11, 2010.
[13] K.-S.D. Cheng, W. Wang, H. Qin, K.-Y.K. Wong, H. Yang, and Y. Liu, “Fitting Subdivision Surfaces to Unorganized Point Data Using Sdm,” Proc. 12th Pacific Conf. Computer Graphics and Applications, pp. 16-24, 2004.
[14] G. Lavoué and F. Dupont, “Technical Section: Semi-Sharp Subdivision Surface Fitting Based on Feature Lines Approximation,” Computer and Graphics, vol. 33, no. 2, pp. 151-161, 2009.
[15] M. Marinov and L. Kobbelt, “Optimization Techniques for Approximation with Subdivision Surfaces,” Proc. Ninth ACM Symp. Solid Modeling and Applications (SM '04), pp. 113-122, 2004.
[16] J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design. A.K. Peters, Ltd., 1993.
[17] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer, and W. Stuetzle, “Piecewise Smooth Surface Reconstruction,” Proc. ACM SIGGRAPH, pp. 295-302, 1994.
[18] W. Ma, X. Ma, S.-K. Tso, and Z. Pan, “A Direct Approach for Subdivision Surface Fitting from a Dense Triangle Mesh,” Computer Aided Geometric Design, vol. 36, no. 16, pp. 525-536, 2004.
[19] H. Suzuki, S. Takeuchi, F. Kimura, and T. Kanai, “Subdivision Surface Fitting to a Range of Points,” Proc. Seventh Pacific Conf. Computer Graphics and Applications, pp. 158-167, 1999.
[20] T. Kanai, “Meshtoss: Converting Subdivision Surfaces from Dense Meshes,” Proc. Sixth Int'l Workshop Vision Modeling and Visualization, pp. 325-332, 2001.
[21] M. Garland and P.S. Heckbert, “Surface Simplification Using Quadric Error Metrics,” Proc. ACM SIGGRAPH, pp. 209-216, 1997.
[22] I. Boier-Martin, H. Rushmeier, and J. Jin, “Parametrization of Triangle Meshes over Quadrilateral Domains,” Proc. Eurographics/ACM SIGGRAPH Symp. Geometry Processing, 2004.
[23] M. Marinov and L. Kobbelt, “Automatic Generation of Structure-Preserving Multi-Resolution Models,” Computer Graphics Forum, vol. 24, no. 3, pp. 479-486, 2005.
[24] J. Daniels, C. Silva, and E. Cohen, “Localized Quadrilateral Coarsening,” Computer Graphics Forum, vol. 28, no. 5, pp. 1437-1444, 2009.
[25] J. Daniels II, C.T. Silva, and E. Cohen, “Semi-Regular Quadrilateral-Only Remeshing from Simplified Base Domains,” SGP '09: Proc. Symp. Geometry Processing, pp. 1427-1435, 2009.
[26] M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo, and P.E., “Practical Quad Mesh Simplification,” Computer Graphics Forum (Eurographics '10), vol. 29, no. 2, pp. 407-418, 2010.
[27] “Eigen Library—Sparse Direct Solvers,” http://eigen.tuxfamily. org/dox-develTutorialSparse.html#TutorialSparseDirectSolvers , 2011.
[28] H. Pottmann, S. Leopoldseder, and M. Hofer, “Approximation with Active B-Spline Curves and Surfaces,” PG '02: Proc. 10th Pacific Conf. Computer Graphics and Applications, pp. 8-25, 2002.
[29] D. Kovacs, J. Mitchell, S. Drone, and D. Zorin, “Real-Time Creased Approximate Subdivision Surfaces,” I3D '09: Proc. Symp. Interactive 3D Graphics and Games, pp. 155-160, 2009.
20 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool