
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Jan Reininghaus, Christian Löwen, Ingrid Hotz, "Fast Combinatorial Vector Field Topology," IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 10, pp. 14331443, October, 2011.  
BibTex  x  
@article{ 10.1109/TVCG.2010.235, author = {Jan Reininghaus and Christian Löwen and Ingrid Hotz}, title = {Fast Combinatorial Vector Field Topology}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, number = {10}, issn = {10772626}, year = {2011}, pages = {14331443}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.235}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Fast Combinatorial Vector Field Topology IS  10 SN  10772626 SP1433 EP1443 EPD  14331443 A1  Jan Reininghaus, A1  Christian Löwen, A1  Ingrid Hotz, PY  2011 KW  Flow visualization KW  graph algorithms. VL  17 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] T. Weinkauf, “Extraction of Topological Structures in 2d and 3d Vector Fields,” PhD dissertation, Univ. of Magdeburg, http://www.zib.deweinkauf/, 2008.
[2] X. Tricoche, G. Scheuermann, H. Hagen, and S. Clauss, “Vector, Tensor Field Topology Simplification on Irregular Grids,” Proc. Symp. Data Visualization (VisSym '01), D. Ebert J. M. Favre, and R. Peikert, eds., pp. 107116, May 2001.
[3] X. Tricoche, G. Scheuermann, and H. Hagen, “Continuous Topology Simplification of Planar Vector Fields,” Proc. IEEE Conf. Visualization 2001 (VIS '01), pp. 159166, 2001.
[4] T. Weinkauf, H. Theisel, K. Shi, H.C. Hege, and H.P. Seidel, “Extracting Higher Order Critical Points and Topological Simplification of 3D Vector Fields,” Proc. IEEE Conf. Visualization, pp. 559566, Oct. 2005.
[5] T. Klein and T. Ertl, “ScaleSpace Tracking of Critical Points in 3d Vector Fields,” TopologyBased Methods in Visualization, H.H. Helwig Hauser and H. Theisel, eds., pp. 3549, Springer, May 2007.
[6] G. Chen, K. Mischaikow, R. Laramee, P. Pilarczyk, and E. Zhang, “Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 4, pp. 769785, July/Aug. 2007.
[7] J. Reininghaus and I. Hotz, “Combinatorial 2d Vector Field Topology Extraction and Simplification,” Proc.Workshop Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications (TopoInVis '09), 2009.
[8] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological Persistence and Simplification,” Discrete and Computational Geometry, vol. 28, pp. 511533, 2002.
[9] H. Edelsbrunner and J. Harer, “Persistent Homology—A Survey,” Surveys on Discrete and Computational Geometry: Twenty Years Later, J.E. Goodman, J. Pach, and R. Pollack, eds., vol. 458, pp. 257282, AMS Bookstore, 2008.
[10] J. Helman and L. Hesselink, “Representation and Display of Vector Field Topology in Fluid Flow Data Sets,” Computer, vol. 22, no. 8, pp. 2736, Aug. 1989.
[11] T. Wischgoll and G. Scheuermann, “Detection and Visualization of Closed Streamlines in Planar Flows,” IEEE Trans. Visualization and Computer Graphics, vol. 7, no. 2 pp. 165172, Apr.June 2001.
[12] H. Theisel, T. Weinkauf, H.C. Hege, and H.P. Seidel, “GridIndependent Detection of Closed Stream Lines in 2d Vector Fields,” Proc. Vision, Modeling, and Visualization (VMV) Conf., p. 665, Nov. 2004.
[13] R.S. Laramee, H. Hauser, L. Zhao, and F.H. Post, “TopologyBased Flow Visualization, the State of the Art,” TopologyBased Methods in Visualization, H.H. Helwig Hauser and H. Theisel, eds., pp. 119, Springer, May 2007.
[14] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, “MorseSmale Complexes for Piecewise Linear 3Manifolds,” Proc. 19th Ann. Symp. Computational Geometry (SCG '03), pp. 361370, 2003.
[15] A. Gyulassy, V. Natarajan, V. Pascucci, P.T. Bremer, and B. Hamann, “A Topological Approach to Simplification of ThreeDimensional Scalar Functions,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 4, pp. 474484, July/Aug. 2006.
[16] A. Gyulassy, “Combinatorial Construction of MorseSmale Complexes for Data Analysis and Visualization,” PhD dissertation, Univ. of California at Davis, 2008.
[17] T. Lewiner, H. Lopes, and G. Tavares, “Applications of Forman's Discrete Morse Theory to Topology Visualization and Mesh Compression,” IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 5, pp. 499508, Sept./Oct. 2004.
[18] R. Forman, “A User's Guide to Discrete Morse Theory,” Proc. Int'l Conf. Formal Power Series and Algebraic Combinatorics, citeseer.ist. psu.eduforman01users.html, 2001.
[19] T. Lewiner, “Geometric Discrete Morse Complexes,” PhD dissertation, Dept. of Math., PUCRio, http://www.matmidia.mat. pucrio.br/tomlew phd_thesis_puc_uk.pdf, 2005.
[20] R. Forman, “Morse Theory for Cell Complexes,” Advances in Math., vol. 134, pp. 90145, 1998.
[21] R. Forman, “Combinatorial Vector Fields and Dynamical Systems,” Mathematische Zeitschrift, vol. 228, pp. 629681, 1998.
[22] A. Schrijver, Combinatorial Optimization, R. Graham, B. Korte, L. Lovasz, A. Widgerson, and G. Ziegler, eds. Springer, 2003.
[23] S. Hougardy and D. Drake, “Approximation Algorithms for the Weighted Matching Problem,” Oberwolfach report, no. 28, 2004.
[24] A. Hatcher, Algebraic Topology. Cambridge Univ. Press, http://www.math.cornell.edu/~hatcher/ATATpage.html , 2002.
[25] J. Reininghaus, D. Günther, I. Hotz, S. Prohaska, and H.C. Hege, “A Computational Framework for Data Analysis Using Discrete Morse Theory,” Proc. Third Int'l Congress on Math. Software (ICMS '10), Sept. 2010.
[26] H. Kuhn, “The Hungarian Method for the Assignment Problem,” Naval Research Logistics Quarterly, vol. 2, pp. 8397, 1955.
[27] P. Harish and P. Narayanan, “Accelerating Large Graph Algorithms on the GPU Using CUDA,” Proc. IEEE Int'l Conf. High Performance Computing, 2007.