
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Kai Pöthkow, HansChristian Hege, "Positional Uncertainty of Isocontours: Condition Analysis and Probabilistic Measures," IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 10, pp. 13931406, October, 2011.  
BibTex  x  
@article{ 10.1109/TVCG.2010.247, author = {Kai Pöthkow and HansChristian Hege}, title = {Positional Uncertainty of Isocontours: Condition Analysis and Probabilistic Measures}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, number = {10}, issn = {10772626}, year = {2011}, pages = {13931406}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.247}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Positional Uncertainty of Isocontours: Condition Analysis and Probabilistic Measures IS  10 SN  10772626 SP1393 EP1406 EPD  13931406 A1  Kai Pöthkow, A1  HansChristian Hege, PY  2011 KW  Uncertainty KW  probability KW  isolines KW  isosurfaces KW  numerical condition KW  error analysis KW  volume visualization. VL  17 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] B. Taylor and C. Kuyatt, Guidelines for Expressing and Evaluating the Uncertainty of NIST Experimental Results, NIST Technical Note 1297, 1994.
[2] ISO/IEC Guide 983:2008 Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM), Int'l Organization for Standardization, 2008.
[3] W. Feller, Introduction to Probability Theory and Its Applications. John Wiley and Sons, 1968 and 1971.
[4] P. Fornasini, The Uncertainty in Physical Measurements. Springer, 2008.
[5] I. Lira, Evaluating the Measurement Uncertainty: Fundamentals and Practical Guidance. Inst. of Physics Publishing, 2002.
[6] C.R. Johnson and A.R. Sanderson, “A Next Step: Visualizing Errors and Uncertainty,” IEEE Computer Graphics and Applications, vol. 23, no. 5, pp. 610, Sept./Oct. 2003.
[7] G. Grigoryan and P. Rheingans, “PointBased Probabilistic Surfaces to Show Surface Uncertainty,” IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 5, pp. 564573, Sept./Oct. 2004.
[8] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Möller, “CurvatureBased Transfer Functions for Direct Volume Rendering: Methods and Applications,” Proc. IEEE Visualization 2003 Conf., pp. 513520, Oct. 2003.
[9] P.J. Rhodes, R.S. Laramee, R.D. Bergeron, and T.M. Sparr, “Uncertainty Visualization Methods in Isosurface Rendering,” Proc. Eurographics 2003, Short Papers, pp. 8388, 2003.
[10] A.T. Pang, C.M. Wittenbrink, and S.K. Lodha, “Approaches to Uncertainty Visualization,” The Visual Computer, vol. 13, no. 8, pp. 370390, 1997.
[11] H. Griethe and H. Schumann, “The Visualization of Uncertain Data: Methods and Problems,” SimVis, T. Schulze, G. Horton, B. Preim, and S. Schlechtweg, eds., pp. 143156, SCS Publishing House e.V., Mar. 2006.
[12] P. Fornasini, The Uncertainty in Physical Measurements: An Introduction to Data Analysis in the Physics Laboratory. Springer, 2008.
[13] A. Luo, D. Kao, and A. Pang, “Visualizing Spatial Distribution Data Sets,” Proc. Symp. Data Visualization 2003 (VISSYM '03), pp. 2938, 2003.
[14] L. Zadeh, “Fuzzy Sets,” Information Control, vol. 8, pp. 338353, 1965.
[15] W.A. Lodwick, Fuzzy Surfaces in GIS and Geographical Analysis: Theory, Analytical Methods, Algorithms and Applications. CRC Press, 2008.
[16] S. Djurcilov, K. Kim, P. Lermusiaux, and A. Pang, “Visualizing Scalar Volumetric Data with Uncertainty,” Computers and Graphics, vol. 26, no. 2, pp. 239248, 2002.
[17] C.M. Wittenbrink, A.T. Pang, and S.K. Lodha, “Glyphs for Visualizing Uncertainty in Vector Fields,” IEEE Trans. Visualization and Computer Graphics, vol. 2, no. 3, pp. 266279, Sept. 1996.
[18] R.P. Botchen, D. Weiskopf, and T. Ertl, “TextureBased Visualization of Uncertainty in Flow Fields,” Proc. IEEE Visualization 2005 Conf., pp. 647654, 2005.
[19] T. Zuk, J. Downton, D. Gray, S. Carpendale, and J. Liang, “Exploration of Uncertainty in Bidirectional Vector Fields,” Proc. SPIE and IS&T Conf. Electronic Imaging, Visualization and Data Analysis 2008, p. 68090B, 2008.
[20] M. Otto, T. Germer, H.C. Hege, and H. Theisel, “Uncertain 2D Vector Field Topology,” Computer Graphics Forum, vol. 29, pp. 347356, 2010.
[21] H. Li, C.W. Fu, Y. Li, and A. Hanson, “Visualizing LargeScale Uncertainty in Astrophysical Data,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp. 16401647, Nov./Dec. 2007.
[22] J.M. Kniss, R.V. Uitert, A. Stephens, G.S. Li, T. Tasdizen, and C. Hansen, “Statistically Quantitative Volume Visualization,” Proc. IEEE Visualization 2005 Conf., pp. 287294, Oct. 2005.
[23] C. Lundstrom, P. Ljung, A. Persson, and A. Ynnerman, “Uncertainty Visualization in Medical Volume Rendering Using Probabilistic Animation,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp. 16481655, Nov./Dec. 2007.
[24] M. Pauly, N. Mitra, and L. Guibas, “Uncertainty and Variability in Point Cloud Surface Data,” Proc. Eurographics Symp. PointBased Graphics, pp. 7784, 2004.
[25] S. Djurcilov and A. Pang, “Visualizing Sparse Gridded Data Sets,” IEEE Computer Graphics and Applications, vol. 20, no. 5, pp. 5257, Sept./Oct. 2000.
[26] B. Zehner, N. Watanabe, and O. Kolditz, “Visualization of Gridded Scalar Data with Uncertainty in Geosciences,” to be published in Computers and Geoscience, 2010.
[27] A. MacEachren, A. Robinson, S. Hopper, S. Gardner, R. Murray, M. Gahegan, and E. Hetzler, “Visualizing Geospatial Information Uncertainty: What We Know and What We Need to Know,” Cartography and Geographic Information Science, vol. 32, no. 3, pp. 139161, 2005.
[28] T. Zuk, “Visualizing Uncertainty,” PhD thesis, Univ. of Calgary, Apr. 2008.
[29] H. Jänicke, A. Wiebel, G. Scheuermann, and W. Kollmann, “Multifield Visualization Using Local Statistical Complexity,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp. 13841391, Nov./Dec. 2007.
[30] C. Wang, H. Yu, and K.L. Ma, “ImportanceDriven TimeVarying Data Visualization,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 6, pp. 15471554, Nov./Dec. 2008.
[31] R.J. Adler, J.E. Taylor, and K.J. Worsley, Applications of Random Fields and Geometry, Preprint, TechnionIsrael Inst. of Tech nology, 2009.
[32] D.S. Moore, G.P. McCabe, and M.J. Evans, Introduction to the Practice of Statistics. W. H. Freeman & Co., 2005.
[33] R.J. Adler and J. Taylor, Random Fields and Geometry. Springer, 2007.
[34] J.M. Azaïs and M. Wschebor, Level Sets and Extrema of Random Processes and Fields, ch. 6. John Wiley & Sons, 2009.
[35] R.J. Adler, The Geometry of Random Fields. John Wiley and Sons, 1981.
[36] W.E. Lorensen and H.E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” ACM SIGGRAPH Computer Graphics, vol. 21, no. 4, pp. 163169, 1987.
[37] P. Deuflhard and A. Hohmann, Numerical Analysis in Modern Scientific Computing: An Introduction. Springer, 2003.
[38] H. Federer, Geometric Measure Theory. Springer, 1969.
[39] C.E. Scheidegger, J.M. Schreiner, B. Duffy, H. Carr, and C.T. Silva, “Revisiting Histograms and Isosurface Statistics,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 6, pp. 16591666, Nov./Dec. 2008.
[40] J.C.R. Hunt, “Vorticity and Vortex Dynamics in Complex Turbulent Flows,” Canadian Soc. for Mechanical Eng. Trans., vol. 11, no. 1, pp. 2135, 1987.
[41] J. Sahner, T. Weinkauf, N. Teuber, and H.C. Hege, “Vortex and Strain Skeletons in Eulerian and Lagrangian Frames,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 5, pp. 980990, Sept./Oct. 2007.
[42] Y.H. Ryu and J.J. Baik, “Flow and Dispersion in an Urban Cubical Cavity,” Atmospheric Environment, vol. 43, no. 10, pp. 17211729, 2009.
[43] C.L. Bajaj, V. Pascucci, and D.R. Schikore, “The Contour Spectrum,” Proc. IEEE Visualization 1997 Conf., pp. 167174, 1997.
[44] V. Pekar, R. Wiemker, and D. Hempel, “Fast Detection of Meaningful Isosurfaces for Volume Data Visualization,” Proc. IEEE Visualization 2001 Conf., pp. 223230, 2001.
[45] R.P. Kanwal, Generalized Functions: Theory and Technique. Birkhäuser, 1998.
[46] S. Winitzki, “A Handy Approximation for the Error Function and Its Inverse,” http://homepages.physik.unimuenchen.de/ Winitzkierfapprox.pdf, 2008.
[47] J. Krüger and R. Westermann, “Acceleration Techniques for GPUBased Volume Rendering,” Proc. IEEE Visualization 2003 Conf., pp. 287292, 2003.
[48] M. Firbank, A. Coulthard, R. Harrison, and E. Williams, “A Comparison of Two Methods for Measuring the Signal to Noise Ratio on MR Images,” Physics in Medicine and Biology, vol. 44, no. 12, pp. N261N264, 1999.
[49] J. Thong, K. Sim, and J. Phang, “SingleImage SignaltoNoise Ratio Estimation,” Scanning, vol. 23, no. 5, pp. 328336, 2001.
[50] T.N. Palmer et al., “Development of a European MultiModel Ensemble System for Seasonal to InterAnnual Prediction (DEMETER),” Technical Memorandum, European Centre for MediumRange Weather Forecasts, 2004.