Issue No.08 - August (2011 vol.17)
pp: 1096-1107
Ares Lagae , Katholieke Universiteit Leuven, Heverlee and REVES/INRIA Sophia-Antipolis
Sylvain Lefebvre , REVES/INRIA Sophia-Antipolis and ALICE/INRIA Nancy, Nancy
Philip Dutré , Katholieke Universiteit Leuven, Heverlee
We have recently proposed a new procedural noise function, Gabor noise, which offers a combination of properties not found in the existing noise functions. In this paper, we present three significant improvements to Gabor noise: 1) an isotropic kernel for Gabor noise, which speeds up isotropic Gabor noise with a factor of roughly two, 2) an error analysis of Gabor noise, which relates the kernel truncation radius to the relative error of the noise, and 3) spatially varying Gabor noise, which enables spatial variation of all noise parameters. These improvements make Gabor noise an even more attractive alternative for the existing noise functions.
Procedural noise, sparse convolution noise, Gabor noise, isotropic Gabor kernel, circular Gabor filter, Hankel transform, circularly symmetric functions, Gabor noise error analysis, spatially varying Gabor noise.
Ares Lagae, Sylvain Lefebvre, Philip Dutré, "Improving Gabor Noise", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 8, pp. 1096-1107, August 2011, doi:10.1109/TVCG.2010.238
[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, 1972.
[2] P. Benard, A. Lagae, P. Vangorp, S. Lefebvre, G. Drettakis, and J. Thollot, “A Dynamic Noise Primitive for Coherent Stylization,” Computer Graphics Forum, vol. 29, no. 4, pp. 1497-1506, 2010.
[3] H.R. Blackwell, “Luminance Difference Thresholds,” Handbook of Sensory Physiology, D. Jameson and L.M. Hurvich, eds., vol. VII/4, pp. 86-99, Springer-Verlag, 1972.
[4] R.N. Bracewell, The Fourier Transform and Its Applications, third ed. McGraw-Hill, 2000.
[5] R.N. Bracewell, Fourier Analysis and Imaging. Springer, 2004.
[6] R.L. Cook and T. DeRose, Wavelet Noise, ACM Trans. Graphics/Proc. ACM SIGGRAPH, vol. 24, no. 3, pp. 803-811, July 2005.
[7] D.S. Ebert, F. Kenton Musgrave, D. Peachey, K. Perlin, and S. Worley, Texturing and Modeling: A Procedural Approach, third ed. Morgan Kaufmann Publishers, Inc., 2002.
[8] A. Goldberg, M. Zwicker, and F. Durand, “Anisotropic Noise,” ACM Trans. Graphics, vol. 27, no. 3, pp. 54:1-54:8, 2008.
[9] D. Holten, J.J. Wijk Van, and J.-B. Martens, “A Perceptually Based Spectral Model for Isotropic Textures,” ACM Trans. Applied Perception, vol. 3, no. 4, pp. 376-398, 2006.
[10] B. Keith, “Lambert W Function,” softwareLambertW.c , 2009.
[11] A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D.S. Ebert, J.P. Lewis, K. Perlin, and M. Zwicker, “A Survey of Procedural Noise Functions,” Computer Graphics Forum, vol. 29, no. 8, pp. 2579-2600, Dec. 2010.
[12] A. Lagae, S. Lefebvre, G. Drettakis, and P. Dutré, “Procedural Noise Using Sparse Gabor Convolution,” ACM Trans. Graphics, vol. 28, no. 3, pp. 54:1-54:10, 2009.
[13] A. Lagae, S. Lefebvre, G. Drettakis, and P. Dutré, “Procedural Noise Using Sparse Gabor Convolution—Auxiliary Material,” Report CW 545, Department of Computer Science, Katholieke Universiteit Leuven, May 2009.
[14] J.P. Lewis, “Algorithms for Solid Noise Synthesis,” ACM SIGGRAPH Computer Graphics, vol. 23, pp. 263-270, 1989.
[15] A. Papoulis and U. Pillai, Probability, Random Variables and Stochastic Processes, fourth ed. McGraw-Hill, 2002.
[16] K. Perlin, “Improving Noise,” Proc. ACM SIGGRAPH '02, pp. 681-682, 2002.
[17] W.H. Press, W.T. Vetterling, S.A. Teukolsky, and B.P. Flannery, Numerical Recipes in C++, second ed. Cambridge Univ. Press, 2002.
[18] W.C. van Etten, Introduction to Random Signals and Noise. Wiley, 2005.
[19] J.J. van Wijk, “Spot Noise Texture Synthesis for Data Visualization,” ACM SIGGRAPH Computer Graphics, vol. 25, pp. 309-318, 1991.
[20] C. Ware and W. Knight, “Using Visual Texture for Information Display,” ACM Trans. Graphics, vol. 14, no. 1, pp. 3-20, 1995.
[21] S. Worley, “A Cellular Texture Basis Function,” Proc. ACM SIGGRAPH '96, pp. 291-294, 1996.
[22] J. Zhang, T. Tan, and L. Ma, “Invariant Texture Segmentation via Circular Gabor Filters,” Proc. 16th Int'l Conf. Pattern Recognition, vol. 2, pp. 901-904, 2002.