The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - May (2011 vol.17)
pp: 626-641
Martin Nöllenburg , Karlsruhe Institute of Technology (KIT) , Karlsruhe
ABSTRACT
Metro maps are schematic diagrams of public transport networks that serve as visual aids for route planning and navigation tasks. It is a challenging problem in network visualization to automatically draw appealing metro maps. There are two aspects to this problem that depend on each other: the layout problem of finding station and link coordinates and the labeling problem of placing nonoverlapping station labels. In this paper, we present a new integral approach that solves the combined layout and labeling problem (each of which, independently, is known to be NP-hard) using mixed-integer programming (MIP). We identify seven design rules used in most real-world metro maps. We split these rules into hard and soft constraints and translate them into an MIP model. Our MIP formulation finds a metro map that satisfies all hard constraints (if such a drawing exists) and minimizes a weighted sum of costs that correspond to the soft constraints. We have implemented the MIP model and present a case study and the results of an expert assessment to evaluate the performance of our approach in comparison to both manually designed official maps and results of previous layout methods.
INDEX TERMS
Network visualization, graph drawing, graph labeling, metro map, octilinear layout, mixed-integer programming.
CITATION
Martin Nöllenburg, "Drawing and Labeling High-Quality Metro Maps by Mixed-Integer Programming", IEEE Transactions on Visualization & Computer Graphics, vol.17, no. 5, pp. 626-641, May 2011, doi:10.1109/TVCG.2010.81
REFERENCES
[1] M. Nöllenburg and A. Wolff, “A Mixed-Integer Program for Drawing High-Quality Metro Maps,” Proc. 13th Int'l Symp. Graph Drawing (GD '05), pp. 321-333, 2006.
[2] K. Garland, Mr Beck's Underground Map. Capital Transport, 1994.
[3] M. Ovenden, Metro Maps of the World. Capital Transport, 2003.
[4] A. Morrison, “Public Transport Maps in Western European Cities,” Cartographic J., vol. 33, no. 2, pp. 93-110, 1996.
[5] D.J. Bartram, “Comprehending Spatial Information: The Relative Efficiency of Different Methods of Presenting Information about Bus Routes,” J. Applied Psychology, vol. 65, no. 1, pp. 103-110, 1980.
[6] E.S. Sandvad, K. Grønbæk, L. Sloth, and J.L. Knudsen, “A Metro Map Metaphor for Guided Tours on the Web: The Webvise Guided Tour System,” Proc. 10th Int'l World Wide Web Conf. (WWW '01), pp. 326-333, 2001.
[7] K.V. Nesbitt, “Getting to More Abstract Places Using the Metro Map Metaphor,” Proc. Eighth Int'l Conf. Information Visualisation (IV '04), pp. 488-493, 2004.
[8] J.M. Stott, P. Rodgers, R.A. Burkhard, M. Meier, and M.T.J. Smis, “Automatic Layout of Project Plans Using a Metro Map Metaphor,” Proc. Ninth Int'l Conf. Information Visualisation (IV '05), pp. 203-206, 2005.
[9] O'Reilly, “Open Source Route Map,” http://www.oreilly.de/ artikelroutemap.pdf , 2003.
[10] W.C. Hahn and R.A. Weinberg, “A Subway Map of Cancer Pathways,” poster in Nature Rev. Cancer, vol. 2, http://www. nature.com/nrc/posters/subpathways index.html, 2002.
[11] S.L. Teig, “The X Architecture: Not Your Father's Diagonal Wiring,” Proc. Int'l Workshop System-Level Interconnect Prediction (SLIP '02), pp. 33-37, 2002.
[12] U. Brandes, M. Eiglsperger, M. Kaufmann, and D. Wagner, “Sketch-Driven Orthogonal Graph Drawing,” Proc. 10th Int'l Symp. Graph Drawing (GD '02), pp. 1-11, 2002.
[13] G. di Battista, P. Eades, R. Tamassia, and I.G. Tollis, Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.
[14] Drawing Graphs: Methods and Models, M. Kaufmann and D. Wagner, eds. Springer-Verlag, 2001.
[15] I. Herman, G. Melançon, and M.S. Marshall, “Graph Visualization and Navigation in Information Visualization: A Survey,” IEEE Trans. Visualization and Computer Graphics, vol. 6, no. 1, pp. 24-43, Jan. 2000.
[16] S. Avelar and L. Hurni, “On the Design of Schematic Transport Maps,” Cartographica, vol. 41, no. 3, pp. 217-228, 2006.
[17] M.J. Roberts, Underground Maps After Beck. Capital Transport, 2005.
[18] M. Nöllenburg, “Automated Drawing of Metro Maps,” Technical Report 2005-25, Fakultät für Informatik, Universität Karlsruhe, http://digbib.ubka.uni-karlsruhe.de/volltexte 1000004123, 2005.
[19] G. Neyer, “Line Simplification with Restricted Orientations,” Proc. Sixth Int'l Workshop Algorithms and Data Structures (WADS '99), pp. 13-24, 1999.
[20] D. Merrick and J. Gudmundsson, “Path Simplification for Metro Map Layout,” Proc. 14th Int'l Symp. Graph Drawing (GD '06), pp. 258-269, 2007.
[21] T. Barkowsky, L.J. Latecki, and K.-F. Richter, “Schematizing Maps: Simplification of Geographic Shape by Discrete Curve Evolution,” Spatial Cognition II, pp. 41-53, Springer-Verlag, 2000.
[22] S. Avelar and M. Müller, “Generating Topologically Correct Schematic Maps,” Proc. Ninth Int'l Symp. Spatial Data Handling (SDH '00), pp. 4a.28-4a.35, 2000.
[23] S. Avelar, “Convergence Analysis and Quality Criteria for an Iterative Schematization of Networks,” Geoinformatica, vol. 11, pp. 497-513, 2007.
[24] S. Avelar, “Visualizing Public Transport Networks: An Experiment in Zurich,” J. Maps, vol. 2008, pp. 134-150, 2008.
[25] S. Cabello, M. de Berg, S. van Dijk, M. van Kreveld, and T. Strijk, “Schematization of Road Networks,” Proc. 17th Ann. ACM Symp. Computational Geometry (SoCG '01), pp. 33-39, 2001.
[26] S. Cabello and M. van Kreveld, “Approximation Algorithms for Aligning Points,” Proc. 19th Ann. ACM Symp. Computational Geometry (SoCG '03), pp. 20-28, 2003.
[27] A. Wolff, “Drawing Subway Maps: A Survey,” Informatik— Forschung und Entwicklung, vol. 22, no. 1, pp. 23-44, 2007.
[28] S.-H. Hong, D. Merrick, and H.A.D. do Nascimento, “Automatic Visualization of Metro Maps,” J. Visual Languages and Computing, vol. 17, no. 3, pp. 203-224, 2006.
[29] U. Lauther and A. Stübinger, “Generating Schematic Cable Plans Using Springembedder Methods,” Proc. 10th Int'l Symp. Graph Drawing (GD '01), pp. 465-466, 2002.
[30] H.A.D. do Nascimento and P. Eades, “User Hints for Map Labeling,” J. Visual Languages and Computing, vol. 19, no. 1, pp. 39-74, 2008.
[31] J.M. Stott and P. Rodgers, “Metro Map Layout Using Multicriteria Optimization,” Proc. Eighth Int'l Conf. Information Visualization (IV '04), pp. 355-362, 2004.
[32] J. Stott, P. Rodgers, J.C. Martinez-Ovando, and S.G. Walker, “Automatic Metro Map Layout Using Multicriteria Optimization,” IEEE Trans. Visualization and Computer Graphics, Jan. 2010, http://doi.ieeecomputersociety.org/10.1109 TVCG.2010.24.
[33] M. Nöllenburg, “An Improved Algorithm for the Metro-Line Crossing Minimization Problem,” Proc. 17th Int'l Symp. Graph Drawing (GD '09), pp. 381-392, 2010.
[34] M. Jünger and P. Mutzel, “2-Layer Straightline Crossing Minimization: Performance of Exact and Heuristic Algorithms,” J. Graph Algorithms and Applications, vol. 1, no. 1, pp. 1-25, 1997.
[35] G.W. Klau and P. Mutzel, “Combining Graph Labeling and Compaction,” Proc. Eighth Int'l Symp. Graph Drawing (GD '99), pp. 27-37, 1999.
[36] C. Binucci, W. Didimo, G. Liotta, and M. Nonato, “Orthogonal Drawings of Graphs with Vertex and Edge Labels,” Computational Geometry: Theory and Applications, vol. 32, no. 2, pp. 71-114, 2005.
[37] Sydney CityRail, http://www.cityrail.nsw.gov.au/network maps network_map.pdf, 2008.
[38] R. Tamassia, “On Embedding a Graph in the Grid with the Minimum Number of Bends,” SIAM J. Computing, vol. 16, no. 3, pp. 421-444, 1987.
[39] IBM ILOG CPLEX, http://www.ilog.com/productscplex, 2010.
32 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool