This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
An Application of Multivariate Statistical Analysis for Query-Driven Visualization
March 2011 (vol. 17 no. 3)
pp. 264-275
Luke J. Gosink, Pacific Northwest National Laboratory, Battelle Memorial Institute, Richland
Christoph Garth, University of California, Davis, Davis
John C. Anderson, University of California, Davis, Davis
E. Wes Bethel, Lawrence Berkeley National Laboratory, Berkeley
Kenneth I. Joy, University of California, Davis, Davis
Driven by the ability to generate ever-larger, increasingly complex data, there is an urgent need in the scientific community for scalable analysis methods that can rapidly identify salient trends in scientific data. Query-Driven Visualization (QDV) strategies are among the small subset of techniques that can address both large and highly complex data sets. This paper extends the utility of QDV strategies with a statistics-based framework that integrates nonparametric distribution estimation techniques with a new segmentation strategy to visually identify statistically significant trends and features within the solution space of a query. In this framework, query distribution estimates help users to interactively explore their query's solution and visually identify the regions where the combined behavior of constrained variables is most important, statistically, to their inquiry. Our new segmentation strategy extends the distribution estimation analysis by visually conveying the individual importance of each variable to these regions of high statistical significance. We demonstrate the analysis benefits these two strategies provide and show how they maybe used to facilitate the refinement of constraints over variables expressed in a user's query. We apply our method to data sets from two different scientific domains to demonstrate its broad applicability.

[1] J.C. Anderson, L.J. Gosink, M.A. Duchaineau, and K.I. Joy, "Feature Identification and Extraction in Function Fields," Proc. Eurographics/IEEE-VGTC Symp. Visualization (EuroVis '07), pp. 195-201, May 2007.
[2] C.L. Bajaj, V. Pascucci, and D.R. Schikore, "The Contour Spectrum," Proc. IEEE Visualization Conf., pp. 167-173, 1997.
[3] D.C. Banks and S. Linton, "Counting Cases in Marching Cubes: Toward a Generic Algorithm for Producing Substitopes," Proc. IEEE Visualization Conf., pp. 51-58, Oct. 2003.
[4] R.A. Becker and W.S. Cleveland, "Brushing Scatterplots," Technometrics, vol. 29, no. 2, pp. 127-142, 1987.
[5] E.W. Bethel, S. Campbell, E. Dart, K. Stockinger, and K. Wu, "Accelerating Network Traffic Analysis Using Query-Driven Visualization," Proc. IEEE Symp. Visual Analytics Science and Technology, pp. 115-122, Oct. 2006.
[6] D.M. Butler, J.C. Almond, R.D. Bergeron, K.W. Brodlie, and R.B. Haber, "Visualization Reference Models," Proc. IEEE Visualization Conf., pp. 337-342, 1993.
[7] H. Carr, D. Brian, and D. Brian, "On Histograms and Isosurface Statistics," IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp. 1259-1266, Sept./Oct. 2006.
[8] H. Childs, E.S. Brugger, K.S. Bonnell, J.S. Meredith, M. Miller, B.J. Whitlock, and N. Max, "A Contract-Based System for Large Data Visualization," Proc. IEEE Visualization Conf., pp. 190-198, 2005.
[9] D. Comaniciu and P. Meer, "Mean Shift: A Robust Approach Toward Feature Space Analysis," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603-619, May 2002.
[10] R.A. Crawfis and N. Max, "Texture Splats for 3D Scalar and Vector Field Visualization," Proc. IEEE Visualization Conf., pp. 261-266, 1993.
[11] K. Fukunaga and L. Hostetler, "The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition," IEEE Trans. Information Theory, vol. 21, no. 1, pp. 32-40, Jan. 1975.
[12] B. Georgescu, I. Shimshoni, and P. Meer, "Mean Shift Based Clustering in High Dimensions: A Texture Classification Example," Proc. IEEE Int'l Conf. Computer Vision, vol. 1, pp. 456-463, 2003.
[13] M. Glatter, J. Huang, S. Ahern, J. Daniel, and A. Lu, "Visualizing Temporal Patterns in Large Multivariate Data Using Modified Globbing," IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 6, pp. 1467-1474, Nov./Dec. 2008.
[14] M. Glatter, J. Huang, J. Gao, and C. Mollenhour, "Scalable Data Servers for Large Multivariate Volume Visualization," IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp. 1291-1298, Sept./Oct. 2006.
[15] L.J. Gosink, J.C. Anderson, E.W. Bethel, and K.I. Joy, "Variable Interactions in Query-Driven Visualization," IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp. 1400-1407, Nov./Dec. 2007.
[16] L.J. Gosink, J.C. Anderson, E.W. Bethel, and K.I. Joy, "Query-Driven Visualization of Time-Varying Adaptive Mesh Refinement Data," IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 6, pp. 1715-1722, Nov./Dec. 2008.
[17] L.J. Gosink, K. Wu, E.W. Bethel, J.D. Owens, and K.I. Joy, "Bin-Hash Indexing: A Parallel Method for Fast Query Processing," Technical Report LBNL-729E, Lawrence Berkeley Nat'l Laboratory, http://www.vis.lbl.gov/Publications/2008 LBNL-729E.pdf, 2008.
[18] L.J. Gosink, K. Wu, E.W. Bethel, J.D. Owens, and K.I. Joy, "Data Parallel Bin-Based Indexing for Answering Queries on Multi-Core Architectures," Proc. Conf. Scientific and Statistical Database Management, vol. 5566, pp. 110-129, June 2009.
[19] A.G. Gray and A.W. Moore, "Rapid Evaluation of Multiple Density Models," Proc. Ninth Int'l Workshop Artificial Intelligence and Statistics, 2003.
[20] L. Greengard and V. Rokhlin, "A Fast Algorithm for Particle Simulations," J. Computational Physics, vol. 73, no. 2, pp. 325-348, Dec. 1987.
[21] H.-C. Hege, M. Seebass, D. Stalling, and M. Zöckler, "A Generalized Marching Cubes Algorithm Based on Non-Binary Classifications," Technical Report SC-97-05, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1997.
[22] Y. Ioannidis, "The History of Histograms (abridged)," Proc. 29th Int'l Conf. Very Large Data Bases (VLDB), pp. 19-30, 2003.
[23] H. Jänicke, M. Böttinger, and G. Scheuermann, "Brushing of Attribute Clouds for the Visualization of Multivariate Data," IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 6, pp. 1459-1466, Nov./Dec. 2008.
[24] T. Ju, F. Losasso, S. Schaefer, and J. Warren, "Dual Contouring of Hermite Data," ACM Trans. Graphics, vol. 21, no. 3, pp. 339-346, 2002.
[25] J. Kniss, G. Kindlmann, and C. Hansen, "Multidimensional Transfer Functions for Interactive Volume Rendering," IEEE Trans. Visualization and Computer Graphics, vol. 8, no. 3, pp. 270-285, July-Sept. 2002.
[26] C. Ledergerber, G. Guennebaud, M. Meyer, M. Bächer, and H. Pfister, "Volume MLS Ray Casting," IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 6, pp. 1372-1379, Nov./Dec. 2008.
[27] L. Linsen, T.V. Long, P. Rosenthal, and S. Rosswog, "Surface Extraction from Multi-Field Particle Volume Data Using Multi-Dimensional Cluster Visualization," IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 6, pp. 1483-1490, Nov./Dec. 2008.
[28] Z. Liu, W. Chen, K. Huang, and T. Tan, "A Probabilistic Framework Based on KDE-GMM Hybrid Model (KGHM) for Moving Object Segmentation in Dynamic Scenes," Proc. Eighth Int'l Workshop Visual Surveillance, 2008.
[29] W.E. Lorensen and H.E. Cline, "Marching Cubes: A High Resolution 3D Surface Construction Algorithm," Proc. ACM SIGGRAPH, pp. 163-169, 1987.
[30] C. Lundstrom, P. Ljung, and A. Ynnerman, "Local Histograms for Design of Transfer Functions in Direct Volume Rendering," IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 6, pp. 1570-1579, Nov./Dec. 2006.
[31] K. Mueller, T. Müller, J.E.S. II, R. Crawfis, N. Shareef, and R. Yagel, "Splatting Errors and Antialiasing," IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 2, pp. 178-191, Apr.-June 1998.
[32] G.M. Nielson and R. Franke, "Computing the Separating Surface for Segmented Data," Proc. IEEE Visualization Conf., pp. 229-233, Oct. 1997.
[33] E. Parzen, "On Estimation of a Probability Density Function and Mode," The Annals of Math. Statistics, vol. 33, no. 3, pp. 1065-1076, 1962.
[34] M. Rosenblatt, "Remarks on Some Nonparametric Estimates of a Density Function," The Annals of Math. Statistics, vol. 27, pp. 832-835, 1956.
[35] C.E. Scheidegger, J.M. Schreiner, B. Duffy, H. Carr, and C.T. Silva, "Revisiting Histograms and Isosurface Statistics," IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 6, pp. 1659-1666, Nov./Dec. 2008.
[36] B.W. Silverman, Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, Apr. 1986.
[37] K. Stockinger, J. Shalf, K. Wu, and E.W. Bethel, "Query-Driven Visualization of Large Data Sets," Proc. IEEE Visualization Conf., pp. 167-174, Oct. 2005.
[38] L. Westover, "Interactive Volume Rendering," Proc. Workshop Volume Visualization, pp. 9-16, 1989.
[39] L. Westover, "Footprint Evaluation for Volume Rendering," Proc. ACM SIGGRAPH, pp. 367-376, 1990.
[40] P.C. Wong and R.D. Bergeron, "Multiresolution Multidimensional Wavelet Brushing," Proc. IEEE Visualization Conf., pp. 141-148, 1996.
[41] K. Wu, S. Ahern, E.W. Bethel, J. Chen, H. Childs, E. Cormier-Michel, C.G.R. Geddes, J. Gu, H. Hagen, B. Hamann, W. Koegler, J. Laurent, J. Meredith, P. Messmer, E. Otoo, V. Perevoztchikov, A. Poskanzer, Prabhat, O. Rübel, A. Shoshani, A. Sim, K. Stockinger, G. Weber, and W.-M. Zhang, "FastBit: Interactively Searching Massive Data," J. Physics: Conf. Series, vol. 180, 2009.
[42] K. Wu, W.S. Koegler, J. Chen, and A. Shoshani, "Using Bitmap Index for Interactive Exploration of Large Data Sets," Proc. 15th Int'l Conf. Scientific and Statistical Database Management, pp. 65-74, 2003.
[43] K. Wu, E.J. Otoo, and A. Shoshani, "On the Performance of Bitmap Indices for High Cardinality Attributes," Proc. 30th Int'l Conf. Very Large Data Bases (VLDB), pp. 24-35, 2004.
[44] C. Yang, R. Duraiswami, N.A. Gumerov, and L. Davis, "Improved Fast Gauss Transform and Efficient Kernel Density Estimation," Proc. IEEE Int'l Conf. Computer Vision, vol. 1, pp. 464-471, 2003.
[45] X. Yuan, B.-G. Hu, and R. He, "Agglomerative Mean-Shift Clustering via Query Set Compression," Proc. SIAM Int'l Conf. Data Mining, pp. 221-232, 2009.
[46] X. Zhang and J. Yang, "Moving Object Detection Based on Shape Prediction," J. Optical Soc. of Am., vol. 26, no. 2, pp. 342-349, 2009.

Index Terms:
Query-driven visualization, multivariate analysis, kernel density estimation.
Citation:
Luke J. Gosink, Christoph Garth, John C. Anderson, E. Wes Bethel, Kenneth I. Joy, "An Application of Multivariate Statistical Analysis for Query-Driven Visualization," IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 3, pp. 264-275, March 2011, doi:10.1109/TVCG.2010.80
Usage of this product signifies your acceptance of the Terms of Use.