This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Direct Interval Volume Visualization
November/December 2010 (vol. 16 no. 6)
pp. 1505-1514
Marco Ament, VISUS
Hamish Carr, University of Leeds
We extend direct volume rendering with a unified model for generalized isosurfaces, also called interval volumes, allowing a wider spectrum of visual classification. We generalize the concept of scale-invariant opacity—typical for isosurface rendering—to semi-transparent interval volumes. Scale-invariant rendering is independent of physical space dimensions and therefore directly facilitates the analysis of data characteristics. Our model represents sharp isosurfaces as limits of interval volumes and combines them with features of direct volume rendering. Our objective is accurate rendering, guaranteeing that all isosurfaces and interval volumes are visualized in a crack-free way with correct spatial ordering. We achieve simultaneous direct and interval volume rendering by extending preintegration and explicit peak finding with data-driven splitting of ray integration and hybrid computation in physical and data domains. Our algorithm is suitable for efficient parallel processing for interactive applications as demonstrated by our CUDA implementation.

[1] J. Amanatides and A. Woo, A fast voxel traversal algorithm for ray tracing. In Proceedings of Eurographics, pages 3–10, Amsterdam, North-Holland, 1987. Elsevier Science Publishers.
[2] S. Bergner, T. Möller, D. Weiskopf, and D. J. Muraki, A spectral analysis of function composition and its implications for sampling in direct volume visualization. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 1353–1360, 2006.
[3] H. Edelsbrunner and E. P. Mücke, Three-dimensional alpha shapes. ACM Transactions on Graphics, 13 (1): 43–72, 1994.
[4] K. Engel and T. Ertl, Interactive high-quality volume rendering with flexible consumer graphics hardware. In Eurographics State of The Art Report, 2002.
[5] K. Engel, M. Kraus, and T. Ertl, High-quality pre-integrated volume rendering using hardware-accelerated pixel shading. In Proceedings of the ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages 9–16, New York, NY, USA, 2001. ACM.
[6] H. Federer, Geometric Measure Theory. Springer, 1969.
[7] I. Fujishiro, Y. Maeda, and H. Sato, Interval volume: a solid fitting technique for volumetric data display and analysis. In Proceedings of IEEE Visualization, pages 151–158, Washington, DC, USA, 1995. IEEE Computer Society.
[8] I. Fujishiro, Y. Maeda, H. Sato, and Y. Takeshima, Volumetric data exploration using interval volume. IEEE Transactions on Visualization and Computer Graphics, 2 (2): 144–155, 1996.
[9] D. Griffel, Applied Functional Analysis. Dover Publications, 2002.
[10] B. Guo, Interval set: A volume rendering technique generalizing iso-surface extraction. In Proceedings of IEEE Visualization, pages 3–10, Washington, DC, USA, 1995. IEEE Computer Society.
[11] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. H. Gross, Realtime ray-casting and advanced shading of discrete isosurfaces. Computer Graphics Forum, 24 (3): 303–312, 2005.
[12] W. G. Horner, A new method of solving numerical equations of all orders, by continuous approximation. Philosophical Transactions of the Royal Society of London, 109: 308–335, 1819.
[13] J. T. Kajiya and B. P. Von Herzen, Ray tracing volume densities. ACM SIGGRAPH Computer Graphics, 18 (3): 165–174, 1984.
[14] G. Kindlmann and J. W. Durkin, Semi-automatic generation of transfer functions for direct volume rendering. In Proceedings of the 1998 IEEE Symposium on Volume Visualization, pages 79–86, New York, NY, USA, 1998. ACM.
[15] J. Kniss, G. Kindlmann, and C. Hansen, Multidimensional transfer functions for interactive volume rendering. IEEE Transactions on Visualization and Computer Graphics, 8 (3): 270–285, 2002.
[16] A. Knoll, Y. Hijazi, R. Westerteiger, M. Schott, C. Hansen, and H. Hagen, Volume ray casting with peak finding and differential sampling. IEEE Transactions on Visualization and Computer Graphics, 15 (6): 1571–1578, 2009.
[17] M. Kraus, Scale-invariant volume rendering. In Proceedings of IEEE Visualization, pages 295–302, Los Alamitos, CA, USA, 2005. IEEE Computer Society.
[18] M. Kraus, Pre-integrated volume rendering for multi-dimensional transfer functions. In IEEE/EG Symposium on Volume and Point-based Graphics, pages 97–104, 2008.
[19] M. Kraus, W. Qiao, and D. S. Ebert, Projecting tetrahedra without rendering artifacts. In Proceedings of IEEE Visualization, pages 27–34, Washington, DC, USA, 2004. IEEE Computer Society.
[20] J. Krüger and R. Westermann, Acceleration techniques for GPU-based volume rendering. In Proceedings of IEEE Visualization, pages 287–292, Washington, DC, USA, 2003. IEEE Computer Society.
[21] C. Ledergerber, G. Guennebaud, M. D. Meyer, M. Bächer, and H. Pfister, Volume MLS ray casting. IEEE Transactions on Visualization and Computer Graphics, 14 (6): 1372–1379, 2008.
[22] M. Levoy, Display of surfaces from volume data. IEEE Computer Graphics and Applications, 8 (3): 29–37, 1988.
[23] W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3d surface construction algorithm. ACM SIGGRAPH Computer Graphics, 21 (4): 163–169, 1987.
[24] E. Lum, B. Wilson, and K.-L. Ma, High-quality lighting and efficient pre-integration for volume rendering. In Proceedings of Joint Eurographics-IEEE TVCG Symposium on Visualization, pages 25–34, 2004.
[25] S. Marchesin and G. C. de Verdière, High-quality, semi-analytical volume rendering for AMR data. IEEE Transactions on Visualization and Computer Graphics, 15 (6): 1611–1618, 2009.
[26] N. Max, P. Hanrahan, and R. Crawfis, Area and volume coherence for efficient visualization of 3D scalar functions. ACM SIGGRAPH Computer Graphics, 24 (5): 27–33, 1990.
[27] T. S. Newman and H. Yi, A survey of the marching cubes algorithm. Computers and Graphics, pages 854–879, 2006.
[28] G. M. Nielson and J. Sung, Interval volume tetrahedrization. In Proceedings of IEEE Visualization, pages 221–228, Los Alamitos, CA, USA, 1997. IEEE Computer Society Press.
[29] P. Ning and J. Bloomenthal, An evaluation of implicit surface tilers. IEEE Computer Graphics and Applications, 13 (6): 33–41, 1993.
[30] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley, Interactive ray tracing for volume visualization. IEEE Transactions on Visualization and Computer Graphics, 5 (3): 238–250, 1999.
[31] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan, Interactive ray tracing for isosurface rendering. In Proceedings of IEEE Visualization, pages 233–238, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.
[32] S. Röttger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser, Smart hardware-accelerated volume rendering. In Proceedings of the Symposium on Data Visualisation, pages 231–238, Aire-la-Ville, Switzerland, 2003. Eurographics Association.
[33] S. Röttger, M. Kraus, and T. Ertl, Hardware-accelerated volume and isosurface rendering based on cell-projection. In Proceedings of IEEE Visualization, pages 109–116, Los Alamitos, CA, USA, 2000. IEEE Computer Society Press.
[34] C. E. Scheidegger, J. M. Schreiner, B. Duffy, H. Carr, and C. T. Silva, Revisiting histograms and isosurface statistics. IEEE Transactions on Visualization and Computer Graphics, 14 (6): 1659–1666, 2008.
[35] P. Shirley and A. Tuchman, A polygonal approximation to direct scalar volume rendering. ACM SIGGRAPH Computer Graphics, 24 (5): 63–70, 1990.
[36] J. M. Singh and P. J. Narayanan, Real-time ray tracing of implicit surfaces on the GPU. IEEE Transactions on Visualization and Computer Graphics, 16 (2): 261–272, 2010.
[37] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl, A simple and flexible volume rendering framework for graphics-hardware-based raycasting. In Proceedings of the International Workshop on Volume Graphics, pages 187–195, 2005.
[38] S. Takahashi, I. Fujishiro, and Y. Takeshima, Interval volume decomposer: a topological approach to volume traversal. In Proceedings of SPIE Visualization and Data Analysis, volume 5669, pages 103–114, 2005.
[39] G. H. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann, Topology-controlled volume rendering. IEEE Transactions on Visualization and Computer Graphics, 13 (2): 330–341, 2007.
[40] D. Weiskopf, K. Engel, and T. Ertl, Volume clipping via per-fragment operations in texture-based volume visualization. In Proceedings of IEEE Visualization, pages 93–100, Washington, DC, USA, 2002. IEEE Computer Society.
[41] D. Weiskopf, K. Engel, and T. Ertl, Interactive clipping techniques for texture-based volume visualization and volume shading. IEEE Transactions on Visualization and Computer Graphics, 9 (3): 298–312, 2003.

Index Terms:
direct volume rendering, interval volume, isosurface, ray casting, preintegration, scale-invariant opacity
Citation:
Marco Ament, Daniel Weiskopf, Hamish Carr, "Direct Interval Volume Visualization," IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 1505-1514, Nov.-Dec. 2010, doi:10.1109/TVCG.2010.145
Usage of this product signifies your acceptance of the Terms of Use.