The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.06 - November/December (2010 vol.16)
pp: 1431-1440
Allen Sanderson , SCI Institute, University of Utah
Guoning Chen , SCI Institute, University of Utah
Xavier Tricoche , Purdue University
David Pugmire , Oak Ridge National Laboratory
Scott Kruger , Tech-X Corporation
Joshua Breslau , Princeton Plasma Physics Laboratory
ABSTRACT
In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector field, traditional techniques for analyzing the field's topology cannot be used because of its Hamiltonian nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincaré map of the sampled fieldlines in a Poincaré section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactiveparallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined burning plasmas.
INDEX TERMS
Confined magnetic fusion, magnetic field visualization, Poincaré map, periodic magnetic fieldlines, recurrent patterns
CITATION
Allen Sanderson, Guoning Chen, Xavier Tricoche, David Pugmire, Scott Kruger, Joshua Breslau, "Analysis of Recurrent Patterns in Toroidal Magnetic Fields", IEEE Transactions on Visualization & Computer Graphics, vol.16, no. 6, pp. 1431-1440, November/December 2010, doi:10.1109/TVCG.2010.133
REFERENCES
[1] Scirun,http://software.sci.utah.eduscirun.html.
[2] Visit visualization tool, http://www.llnl.gov/visit.
[3] A. Bagherjeiran and C. Kamath, Graph-based methods for orbit classification. In In SIAM International Conference on Data Mining. SIAM, 2005.
[4] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E. Zhang, Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition. IEEE Transactions on Visualization and Computer Graphics, 13 (4): 769–785, Jul./Aug. 2007.
[5] G. Chen, K. Mischaikow, R. S. Laramee, and E. Zhang, Efficient Morse Decompositions of Vector Fields. IEEE Transactions on Visualization and Computer Graphics, 14 (4): 848–862, Jul./Aug. 2008.
[6] J. M. Finn and L. Chacón, Volume preserving integrators for solenoidal fields on a grid. Phys. Plasmas, 12 (5): 054503, 2005.
[7] D. Gerhard, Pitch extraction and fundamental frequency: History and current techniques. Technical report, 2003–06.
[8] J. M. Green, Locating three-dimensional roots by a bisection method. Journal of Computational Physics, 98: 194–198, 1992.
[9] J. M. Greene, Vortex nulls and magnetic nulls. Topological Fluid Dynamics, pages 478–484, 1990.
[10] J. M. Greene, Locating three-dimensional roots by a bisection method. J. Comput. Phys., 98 (2): 194–198, 1992.
[11] J. Hale and H. Kocak, Dynamics and Bifurcations. New York: Springer-Verlag, 1991.
[12] J. L. Helman and L. Hesselink, Representation and Display of Vector Field Topology in Fluid Flow Data Sets. IEEE Computer, 22 (8): 27–36, August 1989.
[13] K. M. Janine, J. Bennett, G. Scheuermann, B. Hamann, and K. I. Joy, Topological segmentation in three-dimensional vector fields. IEEE Transactions on Visualization and Computer Graphics, 10: 198–205, 2004.
[14] J. Jeong and F. Hussain, On the identification of a vortex. J. Fluid Mechanics, 285: 69–94, 1995.
[15] M. Jiang, R. Machiraju, and D. Thompson, A novel approach to vortex core region detection. In In Data Visualization 2002. Proc. VisSym'02, pages 217–225, 202.
[16] D. Kenwright, C. Henze, and C. Levit, Feature extraction of separation and attachment lines. IEEE Transactions on Visualization and Computer Graphics, 5 (2): 135–144, 1999.
[17] S. Kruger, D. Schnack, and C. R. Sovinec, Dynamics of the major disruption of a diii-d plasma. Phys. Plasmas, 12: 56113, 2005.
[18] R. Laramee, H. Hauser, L. Zhao, and F. H. Post, Topology Based Flow Visualization: The State of the Art. In Topology-Based Methods in Visualization (Proceedings of Topo-in-Vis 2005), Mathematics and Visualization, pages 1–19. Springer, 2007.
[19] R. Laramee, H. Hauser, L. Zhao, and F. H. Post, Topology Based Flow Visualization: The State of the Art. In Topology-Based Methods in Visualization (Proceedings of Topo-in-Vis 2005), Mathematics and Visualization, pages 1–19. Springer, 2007.
[20] H. Löffelmann, T., and M. E. Groller, Visualizing Poincaré maps together with the underlying flow. In In International Workshop on Visualization and Mathematics'97, pages 315–328. Springer-Verlag, 1997.
[21] D. Lovely and R. Haimes, Shock detection from computational fluid dynamics results, 1999.
[22] J. E. Marsden and M. West, Discrete mechanics and variational integrators. Acta Numerica, pages 357–514, 2001.
[23] P. J. Morrison, Magnetic field lines, hamiltonian dynamics, and nontwist systems. Phys. Plasmas, 7: 2279, 2000.
[24] W. Park, E. Belova, G. Fu, X. Tang, H. Strauss, and L. Sugiyama, Plasma simulation studies using multilevel physics models. Phys. Plasmas, 6: 1796, 1999.
[25] R. Peikert and F. Sadlo, Visualization Methods for Vortex Rings and Vortex Breakdown Bubbles. In A. Y.K. Museth, T. Moller editor, Proceedings of the 9th Eurographics/IEEE VGTC Symposium on Visualization (EuroVis'07), pages 211–218, May 2007.
[26] R. Peikert, and F. Sadlo, Flow topology beyond skeletons: Visualization of features in recirculating flow. In H.-C. Hege, K. Polthier, and G. Scheuermann editors, Topology-Based Methods in Visualization II, pages 145–160. Springer, 2008.
[27] K. Polthier, and E. Preuß, Identifying vector fields singularities using a discrete hodge decomposition. In Mathematical Visualization III, pages 112–134. Ed: H.C. Hege, K. Polthier, 2003.
[28] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch, The State of the Art in Flow Visualization: Feature Extraction and Tracking. Computer Graphics Forum, 22 (4): 775–792, Dec. 2003.
[29] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. Weber, Scalable computation of streamlines on very large datasets. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, November 2009.
[30] M. Roth and R. Peikert, A higher-order method for finding vortex core lines. In VIS'98: Proceedings of the conference on Visualization'98, pages 143–150, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.
[31] R. Sanchez, S. Hirshman, and V. Lynch, Siesta: an scalable island equilibrium solver for toroidal applications. In American Physical Society, 49th Annual Meeting of the Division of Plasma Physics, 2007. abstract #GP8.130.
[32] T. Schafhitzel, J. E. Vollrath, J. P. Gois, D. Weiskopf, A. Castelo, and T. Ertl, Topology-preserving λ2-based vortex core line detection for flow visualization. Computers & Graphics, 27 (3): 1023–1030, 2008.
[33] G. Scheuermann, H. Hagen, H. Krüger, M. Menzel, and A. Rockwood, Visualization of Higher Order Singularities in Vector Fields. In Proceedings of IEEE Visualization'97, pages 67–74, Oct. 1997.
[34] G. Scheuermann, H. Krüger, M. Menzel, and A. P. Rockwood, Visualizing nonlinear vector field topology. IEEE Transactions on Visualization and Computer Graphics, 4 (2): 109–116, 1998.
[35] C. Sovinec, D. Barnes, T. Gianakon, A. Glasser, R. Nebel, S. Kruger, D. Schnack, S. Plimpton, A. Tarditi, M. Chu, and the NIMROD Team. Nonlinear magnetohydrodynamics with high-order finite elements. Journal of Computational Physics, 195:355, 2004.
[36] M. Tanase and R. C. Veltkamp, Straight line skeleton in linear time, topologically equivalent to the medial axis. In Proceedings EWCG 2004, 20th European Workshop on Computational Geometry, pages 185–188, 2004.
[37] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel, Saddle connectors - an approach to visualizing the topological skeleton of complex 3d vector fields. In VIS'03: Proceedings of the 14th IEEE Visualization 2003 (VIS'03), page 30, Washington, DC, USA, 2003. IEEE Computer Society.
[38] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel, On the applicability of topological methods for complex flow data. In H. Hauser, H. Hagen, and H. Theisel editors, Topology-based Methods in Visualization,, Mathematics and Visualization, pages 105–120. Springer, 2007. Topo-In-Vis 2005, Budmerice, Slovakia, September 29–30.
[39] H. Theisel, T. Weinkauf, H.-P. Seidel, and H. Seidel, Grid-Independent Detection of Closed Stream Lines in 2D Vector Fields. In Proceedings of the Conference on Vision, Modeling and Visualization 2004 (VMV04), pages 421–428, Nov. 2004.
[40] X. Tricoche, G. Scheuermann, and H. Hagen, Continuous topology simplification of planar vector fields. In Proceedings of IEEE Visualization 2001, pages 159–166, 2001.
[41] T. Weinkauf, H. Theisel, K. Shi, H.-C. Hege, and H.-P. Seidel, Extracting higher order critical points and topological simplification of 3d vector fields. In Visualization, 2005. VIS 05. IEEE, pages 559–566, Oct. 2005.
[42] T. Wischgoll and G. Scheuermann, Detection and Visualization of Closed Streamlines in Planar Fields. IEEE Transactions on Visualization and Computer Graphics, 7 (2): 165–172, 2001.
[43] T. Wischgoll and G. Scheuermann, Locating Closed Streamlines in 3D Vector Fields. In Proceedings of the Joint Eurographics - IEEE TCVG Symposium on Visualization (VisSym 02), pages 227–280, May 2002.
[44] T. Wischgoll, G. Scheuermann, and H. Hagen, Tracking Closed Streamlines in Time Dependent Planar Flows. In Proceedings of the Vision Modeling and Visualization Conference 2001 (VMV 01), pages 447–454, Nov. 2001.
24 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool