
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Allen Sanderson, Guoning Chen, Xavier Tricoche, David Pugmire, Scott Kruger, Joshua Breslau, "Analysis of Recurrent Patterns in Toroidal Magnetic Fields," IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 14311440, November/December, 2010.  
BibTex  x  
@article{ 10.1109/TVCG.2010.133, author = {Allen Sanderson and Guoning Chen and Xavier Tricoche and David Pugmire and Scott Kruger and Joshua Breslau}, title = {Analysis of Recurrent Patterns in Toroidal Magnetic Fields}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {16}, number = {6}, issn = {10772626}, year = {2010}, pages = {14311440}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.133}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Analysis of Recurrent Patterns in Toroidal Magnetic Fields IS  6 SN  10772626 SP1431 EP1440 EPD  14311440 A1  Allen Sanderson, A1  Guoning Chen, A1  Xavier Tricoche, A1  David Pugmire, A1  Scott Kruger, A1  Joshua Breslau, PY  2010 KW  Confined magnetic fusion KW  magnetic field visualization KW  Poincaré map KW  periodic magnetic fieldlines KW  recurrent patterns VL  16 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] Scirun,http://software.sci.utah.eduscirun.html.
[2] Visit visualization tool, http://www.llnl.gov/visit.
[3] A. Bagherjeiran and C. Kamath, Graphbased methods for orbit classification. In In SIAM International Conference on Data Mining. SIAM, 2005.
[4] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E. Zhang, Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition. IEEE Transactions on Visualization and Computer Graphics, 13 (4): 769–785, Jul./Aug. 2007.
[5] G. Chen, K. Mischaikow, R. S. Laramee, and E. Zhang, Efficient Morse Decompositions of Vector Fields. IEEE Transactions on Visualization and Computer Graphics, 14 (4): 848–862, Jul./Aug. 2008.
[6] J. M. Finn and L. Chacón, Volume preserving integrators for solenoidal fields on a grid. Phys. Plasmas, 12 (5): 054503, 2005.
[7] D. Gerhard, Pitch extraction and fundamental frequency: History and current techniques. Technical report, 2003–06.
[8] J. M. Green, Locating threedimensional roots by a bisection method. Journal of Computational Physics, 98: 194–198, 1992.
[9] J. M. Greene, Vortex nulls and magnetic nulls. Topological Fluid Dynamics, pages 478–484, 1990.
[10] J. M. Greene, Locating threedimensional roots by a bisection method. J. Comput. Phys., 98 (2): 194–198, 1992.
[11] J. Hale and H. Kocak, Dynamics and Bifurcations. New York: SpringerVerlag, 1991.
[12] J. L. Helman and L. Hesselink, Representation and Display of Vector Field Topology in Fluid Flow Data Sets. IEEE Computer, 22 (8): 27–36, August 1989.
[13] K. M. Janine, J. Bennett, G. Scheuermann, B. Hamann, and K. I. Joy, Topological segmentation in threedimensional vector fields. IEEE Transactions on Visualization and Computer Graphics, 10: 198–205, 2004.
[14] J. Jeong and F. Hussain, On the identification of a vortex. J. Fluid Mechanics, 285: 69–94, 1995.
[15] M. Jiang, R. Machiraju, and D. Thompson, A novel approach to vortex core region detection. In In Data Visualization 2002. Proc. VisSym'02, pages 217–225, 202.
[16] D. Kenwright, C. Henze, and C. Levit, Feature extraction of separation and attachment lines. IEEE Transactions on Visualization and Computer Graphics, 5 (2): 135–144, 1999.
[17] S. Kruger, D. Schnack, and C. R. Sovinec, Dynamics of the major disruption of a diiid plasma. Phys. Plasmas, 12: 56113, 2005.
[18] R. Laramee, H. Hauser, L. Zhao, and F. H. Post, Topology Based Flow Visualization: The State of the Art. In TopologyBased Methods in Visualization (Proceedings of TopoinVis 2005), Mathematics and Visualization, pages 1–19. Springer, 2007.
[19] R. Laramee, H. Hauser, L. Zhao, and F. H. Post, Topology Based Flow Visualization: The State of the Art. In TopologyBased Methods in Visualization (Proceedings of TopoinVis 2005), Mathematics and Visualization, pages 1–19. Springer, 2007.
[20] H. Löffelmann, T., and M. E. Groller, Visualizing Poincaré maps together with the underlying flow. In In International Workshop on Visualization and Mathematics'97, pages 315–328. SpringerVerlag, 1997.
[21] D. Lovely and R. Haimes, Shock detection from computational fluid dynamics results, 1999.
[22] J. E. Marsden and M. West, Discrete mechanics and variational integrators. Acta Numerica, pages 357–514, 2001.
[23] P. J. Morrison, Magnetic field lines, hamiltonian dynamics, and nontwist systems. Phys. Plasmas, 7: 2279, 2000.
[24] W. Park, E. Belova, G. Fu, X. Tang, H. Strauss, and L. Sugiyama, Plasma simulation studies using multilevel physics models. Phys. Plasmas, 6: 1796, 1999.
[25] R. Peikert and F. Sadlo, Visualization Methods for Vortex Rings and Vortex Breakdown Bubbles. In A. Y.K. Museth, T. Moller editor, Proceedings of the 9th Eurographics/IEEE VGTC Symposium on Visualization (EuroVis'07), pages 211–218, May 2007.
[26] R. Peikert, and F. Sadlo, Flow topology beyond skeletons: Visualization of features in recirculating flow. In H.C. Hege, K. Polthier, and G. Scheuermann editors, TopologyBased Methods in Visualization II, pages 145–160. Springer, 2008.
[27] K. Polthier, and E. Preuß, Identifying vector fields singularities using a discrete hodge decomposition. In Mathematical Visualization III, pages 112–134. Ed: H.C. Hege, K. Polthier, 2003.
[28] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch, The State of the Art in Flow Visualization: Feature Extraction and Tracking. Computer Graphics Forum, 22 (4): 775–792, Dec. 2003.
[29] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. Weber, Scalable computation of streamlines on very large datasets. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, November 2009.
[30] M. Roth and R. Peikert, A higherorder method for finding vortex core lines. In VIS'98: Proceedings of the conference on Visualization'98, pages 143–150, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.
[31] R. Sanchez, S. Hirshman, and V. Lynch, Siesta: an scalable island equilibrium solver for toroidal applications. In American Physical Society, 49th Annual Meeting of the Division of Plasma Physics, 2007. abstract #GP8.130.
[32] T. Schafhitzel, J. E. Vollrath, J. P. Gois, D. Weiskopf, A. Castelo, and T. Ertl, Topologypreserving λ2based vortex core line detection for flow visualization. Computers & Graphics, 27 (3): 1023–1030, 2008.
[33] G. Scheuermann, H. Hagen, H. Krüger, M. Menzel, and A. Rockwood, Visualization of Higher Order Singularities in Vector Fields. In Proceedings of IEEE Visualization'97, pages 67–74, Oct. 1997.
[34] G. Scheuermann, H. Krüger, M. Menzel, and A. P. Rockwood, Visualizing nonlinear vector field topology. IEEE Transactions on Visualization and Computer Graphics, 4 (2): 109–116, 1998.
[35] C. Sovinec, D. Barnes, T. Gianakon, A. Glasser, R. Nebel, S. Kruger, D. Schnack, S. Plimpton, A. Tarditi, M. Chu, and the NIMROD Team. Nonlinear magnetohydrodynamics with highorder finite elements. Journal of Computational Physics, 195:355, 2004.
[36] M. Tanase and R. C. Veltkamp, Straight line skeleton in linear time, topologically equivalent to the medial axis. In Proceedings EWCG 2004, 20th European Workshop on Computational Geometry, pages 185–188, 2004.
[37] H. Theisel, T. Weinkauf, H.C. Hege, and H.P. Seidel, Saddle connectors  an approach to visualizing the topological skeleton of complex 3d vector fields. In VIS'03: Proceedings of the 14th IEEE Visualization 2003 (VIS'03), page 30, Washington, DC, USA, 2003. IEEE Computer Society.
[38] H. Theisel, T. Weinkauf, H.C. Hege, and H.P. Seidel, On the applicability of topological methods for complex flow data. In H. Hauser, H. Hagen, and H. Theisel editors, Topologybased Methods in Visualization,, Mathematics and Visualization, pages 105–120. Springer, 2007. TopoInVis 2005, Budmerice, Slovakia, September 29–30.
[39] H. Theisel, T. Weinkauf, H.P. Seidel, and H. Seidel, GridIndependent Detection of Closed Stream Lines in 2D Vector Fields. In Proceedings of the Conference on Vision, Modeling and Visualization 2004 (VMV04), pages 421–428, Nov. 2004.
[40] X. Tricoche, G. Scheuermann, and H. Hagen, Continuous topology simplification of planar vector fields. In Proceedings of IEEE Visualization 2001, pages 159–166, 2001.
[41] T. Weinkauf, H. Theisel, K. Shi, H.C. Hege, and H.P. Seidel, Extracting higher order critical points and topological simplification of 3d vector fields. In Visualization, 2005. VIS 05. IEEE, pages 559–566, Oct. 2005.
[42] T. Wischgoll and G. Scheuermann, Detection and Visualization of Closed Streamlines in Planar Fields. IEEE Transactions on Visualization and Computer Graphics, 7 (2): 165–172, 2001.
[43] T. Wischgoll and G. Scheuermann, Locating Closed Streamlines in 3D Vector Fields. In Proceedings of the Joint Eurographics  IEEE TCVG Symposium on Visualization (VisSym 02), pages 227–280, May 2002.
[44] T. Wischgoll, G. Scheuermann, and H. Hagen, Tracking Closed Streamlines in Time Dependent Planar Flows. In Proceedings of the Vision Modeling and Visualization Conference 2001 (VMV 01), pages 447–454, Nov. 2001.