The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.06 - November/December (2010 vol.16)
pp: 1405-1412
Nan Zhang , University of Minnesota
Xiangmin Zhou , University of Minnesota
Yunhe Shen , University of Minnesota
Robert Sweet , University of Minnesota
ABSTRACT
In this paper, we introduce a novel application of volume modeling techniques on laser Benign Prostatic Hyperplasia (BPH) therapy simulation. The core technique in our system is an algorithm for simulating the tissue vaporization process by laser heating. Different from classical volume CSG operations, our technique takes experimental data as the guidance to determine the vaporization amount so that only a specified amount of tissue is vaporized in each time. Our algorithm uses a predictor-corrector strategy. First, we apply the classical CSG algorithm on a tetrahedral grid based distance field to estimate the vaporized tissue amount. Then, a volume-correction phase is applied on the distance field. To improve the performance, we further propose optimization approaches for efficient implementation.
INDEX TERMS
Volume modeling, volume CSG, controlled-volume vaporization, medical simulation, laser BPH simulator
CITATION
Nan Zhang, Xiangmin Zhou, Yunhe Shen, Robert Sweet, "Volumetric Modeling in Laser BPH Therapy Simulation", IEEE Transactions on Visualization & Computer Graphics, vol.16, no. 6, pp. 1405-1412, November/December 2010, doi:10.1109/TVCG.2010.221
REFERENCES
[1] J. A. Bærentzen and H. Aanæs, Signed distance computation using the angle weighted pseudo-normal. IEEE Transactions on Visualization and Computer Graphics, 11 (3): 243–253, 2005.
[2] D. Bielser, P. Glardon, M. Teschner, and M. Gross, A state machine for real-time cutting of tetrahedral meshes. In Pacific Graphics, pages 377–386, 2003.
[3] D. Breen, S. Mauch, and R. Whitaker, 3D scan conversion of CSG models into distance volumes. In ACM/IEEE Symposium on Volume Visualization, pages 7–14, Oct. 1998.
[4] M. Carlson, P. J. Mucha, I. R. Brooks Van Horn, and G. Turk, Melting and flowing. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 167–174, 2002.
[5] S. F. Frisken, R. N. Perry, and A. P. Rockwood, and T. R. Jones, Adaptively sampled distance fields. In SIGGRAPH Proceedings, pages 249–254, July 2000.
[6] I. Fujishiro and E. Aoki, Volume graphics modeling of ice thawing. In Volume Graphics Workshop, pages 69-0. Springer-Verlag, 2001.
[7] R. Geiss, Generating complex procedural terrains using the GPU. In H. Nguyen editor, GPU Gems 3. Addison-Wesley Professional, 2007.
[8] S. Gibson, Using distance maps for smooth surface representation in sampled volumes. In IEEE Visualization, pages 23–30, Oct. 1998.
[9] A. Gueziec, and R. Hummel, Exploiting triangulated surface extraction using tetrahedral decomposition. IEEE Transactions on Visualization and Computer Graphics, 1: 328–342, 1995.
[10] F. D. IX and A. Kaufman, Incremental triangle voxelization. Graphics Interface, pages 205–212, 2000. ISBN 1-55860-632-7.
[11] M. W. Jones, J. A. Bærentzen, and M. Sramek, 3D distance fields: A survey of techniques and applications. IEEE Transactions on Visualization and Computer Graphics, 12: 581–599, 2006.
[12] T. Ju, F. Losasso, S. Schaefer, and J. Warren, Dual contouring of Hermite data. In SIGGRAPH Proceedings, pages 339–346, July 2002.
[13] H. W. Kang, D. Jebens, R. S. Malek, G. Mitchell, and E. Koullick, Laser vaporization of bovine prostate: A quantitative comparison of potassium-titanyl-phosphate and lithium triborate lasers. The Journal of Urology, 180: 2675–2680, 2008.
[14] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H. Seidel, Feature-sensitive surface extraction from volume data. In SIGGRAPH Proceedings, pages 57–66, August 2001.
[15] F. Labelle and J. R. Shewchuk, Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Transactions on Graphics (TOG), 26 (3): 57.1–57.10, 2007.
[16] W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3d surface construction algorithm. In Computer Graphics (Proceedings of SIGGRAPH 87), volume 21, pages 163–169, July 1987.
[17] N. M. Mueller and E. J. Mueller, KTP photoselective laser vaporization of the prostate: Indications, procedure, and nursing implications. Urol Nurs, 24 (5): 373–380, 2004.
[18] K. Museth, D. E. Breen, R. T. Whitaker, and A. H. Barr, Level set surface editing operators. In SIGGRAPH Proceedings, pages 330–338, July 2002.
[19] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. Journal of Computational Physics, 79 (1): 12–49, 1988.
[20] R. N. Perry and S. F. Frisken, Kizamu: A system for sculpting digital characters. In SIGGRAPH Proceedings, pages 47–56, August 2001.
[21] A. A.G. Requicha and H. B. Voelcker, Solid modeling: a historical summary and contemporary assessment. IEEE Computer Graphics and Applications, 2 (2): 9–22, March 1982.
[22] J. A. Sethian, Level Set Methods and Fast Marching Methods. Cambridge University Press, 1999.
[23] C. Sigg, R. Peikert, and M. Gross, Signed distance transform using graphics hardware. In IEEE Visualization, pages 83–90, Oct. 2003.
[24] M. Sramek and A. Kaufman, Alias-free voxelization of geometric objects. IEEE Transactions on Visualization and Computer Graphics, 5 (3): 251–266, 1999.
[25] A. Sud, M. A. Otaduy, and D. Manocha, Difi: Fast 3d distance field computation using graphics hardware. Computer Graphics Forum, 23 (3): 557–566, 2004.
[26] A. E. Te, The next generation of laser treatments and the role of the greenlight high performance system laser. Rev Urol, 8 (Suppl. 3): S24, 2006.
[27] G. Varadhan, S. Krishnan, Y. J. Kim, and D. Manocha, Feature-sensitive subdivision and isosurface reconstruction. In IEEE Visualization, pages 99–106, Oct. 2003.
[28] H. Varadhan and K. Mueller, Volumetric ablation rendering. In Workshop on Volume Graphics, pages 53–60, 2003.
[29] X. Wei, W. Li, and A. Kaufman, Melting and flowing of viscous volumes. In Computer Animation and Social Agents, pages 54–59, 2003.
[30] R. Westermann, L. Kobbelt, and T. Ertl, Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces. The Visual Computer, 15 (2): 100–111, 1999.
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool