The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.06 - November/December (2010 vol.16)
pp: 1376-1385
Zahid Hosssain , Simon Fraser University
Torsten Möller , Simon Fraser University
ABSTRACT
In this paper we present a novel anisotropic diffusion model targeted for 3D scalar field data. Our model preserves material boundaries as well as fine tubular structures while noise is smoothed out. One of the major novelties is the use of the directional second derivative to define material boundaries instead of the gradient magnitude for thresholding. This results in a diffusion model that has much lower sensitivity to the diffusion parameter and smoothes material boundaries consistently compared to gradient magnitude based techniques. We empirically analyze the stability and convergence of the proposed diffusion and demonstrate its de-noising capabilities for both analytic and real data. We also discuss applications in the context of volume rendering.
INDEX TERMS
Anisotropic diffusion, PDE, De-noising, Scale-Space, Principle Curvatures
CITATION
Zahid Hosssain, Torsten Möller, "Edge Aware Anisotropic Diffusion for 3D Scalar Data", IEEE Transactions on Visualization & Computer Graphics, vol.16, no. 6, pp. 1376-1385, November/December 2010, doi:10.1109/TVCG.2010.147
REFERENCES
[1] A. Adams, J. Baek, and M. Davis, Fast high-dimensional filtering using the permutohedral lattice. In Computer Graphics Forum, volume 29, pages 753–762. John Wiley & Sons, 2010.
[2] S. Aja-Fernandez, R. San-José-Estépar, C. Alberola-Lopez, and C.-F. Westin, Image quality assessment based on local variance. In Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE, pages 4815–4818, Aug 2006.
[3] S. Aja-Fernández, G. Vegas-Sánchez-Ferrero, M. Martín-Fernández, and C. Alberola-López, Automatic noise estimation in images using local statistics. Additive and multiplicative cases. Image and Vision Computing, 27 (6): 756–770, 2009.
[4] D. Barash and D. Comaniciu, A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image and Vision Computing, 22 (1): 73–81, 2004.
[5] D. Bartz, Volvis, [online]. http:/www.volvis.org. Last accessed: 21 July 2010.
[6] A. Buades, B. Coll, and J. M. Morel, A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation, 4 (2): 490–530, 2005.
[7] R. Carmona and S. Zhong, Adaptive smoothing respecting feature directions. IEEE Transactions on Image Processing, 7 (3): 353–358, 1998.
[8] H. Carr, J. Snoeyink, and M. van de Panne, Simplifying flexible isosur-faces using local geometric measures. In 15th IEEE Visualization 2004 Conference (VIS 2004), 10–15 October 2004, Austin, TX, USA, pages 497–504. IEEE Computer Society, 2004.
[9] D. Collins, A. Zijdenbos, V. Kollokian, J. Sled, N. Kabani, C. Holmes, and A. Evans, Design and construction of a realistic digital brain phantom. IEEE Transactions on Medical Imaging, 17 (3): 463, 1998.
[10] D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24 (5): 603–619, May 2002.
[11] G. Gerig, O. Kubler, R., and F. Jolesz, Nonlinear anisotropic filtering of MRI data. IEEE Transactions on Medical Imaging, 11 (2): 221–232, 1992.
[12] R. Goldman, Curvature formulas for implicit curves and surfaces. Computer Aided Geometric Design, 22 (7): 632–658, 2005. Geometric Modelling and Differential Geometry.
[13] Z. Hossain, U. R. Alim, and T. Möller, Toward high-quality gradient estimation on regular lattices. IEEE Transactions on Visualization and Computer Graphics, 99 (RapidPosts), 2010.
[14] G. Kindlmann and J. W. Durkin, Semi-automatic generation of transfer functions for direct volume rendering. In VVS '98: Proceedings of the 1998 IEEE Symposium on Volume Visualization, pages 79–86, New York, NY, USA, 1998. ACM.
[15] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Möller, Curvature-based transfer functions for direct volume rendering: Methods and applications. In Proceedings of the 14th IEEE Visualization 2003 (VIS'0), pages 513–520. IEEE Computer Society, 2003.
[16] G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York, 1968.
[17] K. Krissian, AMILab, [online]. http : /amilab . sourcef orge . net. Version: 2.0.4, Last accessed: 21 July 2010.
[18] K. Krissian, Flux-based anisotropic diffusion applied to enhancement of 3D angiogram. IEEE Transactions on Medical Imaging, 21 (11): 1440–1442, 2002.
[19] K. Krissian and S. Aja-Fernández, Noise-driven anisotropic diffusion filtering of MRI. IEEE Transaction on Image Processing., 18 (10): 2265–2274, 2009.
[20] K. Krissian, G. Malandain, and N. Ayache, Directional anisotropic diffusion applied to segmentation of vessels in 3D images. In SCALE-SPACE '97: Proceedings of the First International Conference on Scale-Space Theory in Computer Vision, pages 345–348, London, UK, 1997. Springer-Verlag.
[21] K. Krissian, C. Westin, R. Kikinis, and K. Vosburgh, Oriented speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing, 16 (5): 1412–1424, 2007.
[22] D. Marr and E. Hildreth, Theory of edge detection. Proceedings of the Royal Society of London Series B, 207: 187–217, 1980.
[23] B. Merriman, J. Bence, and S. Osher, Diffusion generated motion by mean curvature. In Computational Crystal Growers Workshop, 1992.
[24] K. Mosaliganti, F. Janoos, A. Gelas, R. Noche, N. Obholzer, R. Machi-raju, and S. Megason, Anisotropic plate diffusion filtering for detection of cell membranes in 3D microscopy images. In Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on, pages 588–591, April 2010.
[25] O. Nemitz, M. Rumpf, T. Tasdizen, and R. Whitaker, Anisotropic curvature motion for structure enhancing smoothing of 3D MR angiography data. Journal of Mathematical Imaging and Vision, 27 (3): 217–229, 2007.
[26] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell., 12 (7): 629–639, 1990.
[27] R. Prager, G. Andrew, and G. Treece, Stradx, [online]. http: //mi . eng.cam.ac.uk/~rwp/stradx. Version: 7.4g, Last accessed: 21 July 2010.
[28] T. Preusser and M. Rumpf, A level set method for anisotropic geometric diffusion in 3D image processing. SIAM Journal on Applied Mathematics, 62 (5): 1772–1793, 2002.
[29] S. Roettger, The volume library, [online]. http://www9. inf ormatik .uni-erlangen . de/ External/vollib.Last accessed: 21 July 2010.
[30] L. Schjøth, J. Sporring, and O. Olsen, Diffusion based photon mapping. In Computer Graphics Forum, volume 27, pages 2114–2127. John Wiley & Sons, 2008.
[31] Q. Sun, J. Hossack, J. Tang, and S. Acton, Speckle reducing anisotropic diffusion for 3D ultrasound images. Computerized Medical Imaging and Graphics, 28 (8): 461–470, 2004.
[32] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher, Geometric surface smoothing via anisotropic diffusion of normals. IEEE Conference on Visualization, pages 125–132, 2002.
[33] S. Tenginakai, J. Lee, and R. Machiraju, Salient iso-surface detection with model-independent statistical signatures. In T. Ertl, K. I. Joy, and A. Varshney editors, IEEE Conference on Visualization. IEEE Computer Society, 2001.
[34] C. Tomasi, and R. Manduchi, Bilateral filtering for gray and color images. In Computer Vision, 1998. Sixth International Conference on, pages 839–846, 1998.
[35] L. Velho, L. H. de Figueiredo, and J. A. Gomes, Implicit Objects in Computer Graphics. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.
[36] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13 (4): 600–612, 2004.
[37] J. Weickert, Anisotropic Diffusion in Image Processing. B.G. Teubner, Stuttgart, Germany, 1998.
[38] J. Weickert, Coherence-enhancing diffusion filtering. Int. J. Comput. Vision, 31 (2–3): 111–127, 1999.
[39] R. Whitaker, Volumetric deformable models: Active blobs. In Proceedings of SPIE, pages 122–134, 1994.
[40] Y. Yu and S. Acton, Speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing, 11 (11): 1260–1270, 2002.
14 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool