This Article 
 Bibliographic References 
 Add to: 
Exploration of 4D MRI Blood Flow using Stylistic Visualization
November/December 2010 (vol. 16 no. 6)
pp. 1339-1347
Roy van Pelt, Eindhoven University of Technology
Javier Oliván Bescós, Philips Healthcare
Marcel Breeuwer, Philips Healthcare
Rachel E. Clough, King's College London; Guy's and St Thomas' NHS foundation
M. Eduard Gröller, Vienna University of Technology
Bart ter Haar Romenij, Eindhoven University of Technology
Anna Vilanova, Eindhoven University of Technology
Insight into the dynamics of blood-flow considerably improves the understanding of the complex cardiovascular system and its pathologies. Advances in MRI technology enable acquisition of 4D blood-flow data, providing quantitative blood-flow velocities over time. The currently typical slice-by-slice analysis requires a full mental reconstruction of the unsteady blood-flow field, which is a tedious and highly challenging task, even for skilled physicians. We endeavor to alleviate this task by means of comprehensive visualization and interaction techniques. In this paper we present a framework for pre-clinical cardiovascular research, providing tools to both interactively explore the 4D blood-flow data and depict the essential blood-flow characteristics. The framework encompasses a variety of visualization styles, comprising illustrative techniques as well as improved methods from the established field of flow visualization. Each of the incorporated styles, including exploded planar reformats, flow-direction highlights, and arrow-trails, locally captures the blood-flow dynamics and may be initiated by an interactively probed vessel cross-section. Additionally, we present the results of an evaluation with domain experts, measuring the value of each of the visualization styles and related rendering parameters.

[1] American Heart Association. Heart disease and stroke statistics, 2010 update at-a-glance., 2010.
[2] M. A. Bernstein and Y. Ikezaki, Comparison of phase-difference and complex-difference processing in phase-contrast MR angiography. Magnetic Resonance Imaging, 1 (2): 725–729, 1991.
[3] H. G. Bogren and M. H. Buonocore, 4D Magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. Magnetic Resonance Imaging, 10 (5): 861–869, 1999.
[4] H. Bouma, J. Olivan Bescos, A. Vilanova, and F. A. Gerritsen, Unbiased vessel-diameter quantification based on the FWHM criterion. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, volume 6512, Mar 2007.
[5] S. Bruckner and M. E. Groller, Exploded views for volume data. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 1077–1084, Sept 2006.
[6] D. DeCarlo and S. Rusinkiewicz, Highlight lines for conveying shape. In NPAR '07: Proceedings of the 5th international symposium on Non-photorealistic animation and rendering, pages 63–70, New York, NY, USA, 2007. ACM.
[7] M. H. Everts, H. Bekker, J. B. Roerdink, and T. Isenberg, Depth-dependent halos: illustrative rendering of dense line data. IEEE Transactions on Visualization and Computer Graphics, 15: 1299–1306, 2009.
[8] A. Frydrychowicz, R. Arnold, A. Harloff, C. Schlensak, J. Hennig, M. Langer, and M. Markl, Images in cardiovascular medicine. In vivo 3-dimensional flow connectivity mapping after extracardiac total cavopul-monary connection. Circulation, 118: e16–17, Jul 2008.
[9] A. Frydrychowicz, A. F. Stalder, M. F. Russe, J. Bock, S. Bauer, A. Harloff, A. Berger, M. Langer, J. Hennig, and M. Markl, Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI. Magnetic Resonance Imaging, 30: 77–84, 2009.
[10] B. Gooch and A. Gooch, Non-photorealistic rendering. A. K.Peters, Ltd., Natick, MA, USA, 2001.
[11] G. Greil, T. Geva, S. E. Maier, and A. J. Powell, Effect of acquisition parameters on the accuracy of velocity encoded cine magnetic resonance imaging blood flow measurements. Magnetic Resonance Imaging, 15 (1): 47–54, 2002.
[12] T. A. Hope, M. Markl, L. Wigstrom, M. T. Alley, D. C. Miller, and R. J. Herfkens, Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping. Magnetic Resonance Imaging, 26: 1417–1479, 2007.
[13] S. Jin and J. Oshinski, and D. P. Giddens, Entrance flow patterns in the coronary arteries: a computational study. In ASME Bioengineering, number 1, pages 2–3, 2003.
[14] D. Kainmuller, R. Unterhinninghofen, S. Ley, and R. Dillmann, Level set segmentation of the heart from 4D phase contrast MRI. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, volume 6914, Apr 2008.
[15] H. Knutsson, Representing local structure using tensors. In Proceedings of Scandinavian Conference on Image Analysis, volume 6, pages 244–251, 1989.
[16] A. Kohn, J. Klein, F. Weiler, and H.-O. Peitgen, A GPU-based fiber tracking framework using geometry shaders. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, volume 7261, pages 72611J–1 – 72611J–10, 2009.
[17] M. Markl, F. P. Chan, M. T. Alley, K. L. Wedding, M. T. Draney, C. J. Elkins, D. W. Parker, C. A. Taylor, R. J. Herfkens, and N. J. Pelc, Time resolved three dimensional phase contrast MRI. Magnetic Resonance Imaging, 506: 64, 2003.
[18] O. Mattausch, T. Theußl, H. Hauser, and E. Groller, Strategies for interactive exploration of 3D flow using evenly-spaced illuminated streamlines. In SCCG '03: Proceedings of the 19th spring conference on Computer graphics, pages 213–222, New York, NY, USA, 2003. ACM.
[19] T. Peeters, A. Vilanova, G. Strijkers, and B. ter Haar Romeny, Visualization of the fibrous structure of the heart. In Proceedings of VMV 2006, pages 309–317, Nov 2006.
[20] N. J. Pelc, R. J. Herfkens, A. Shimakawa, and D. R. Enzmann, Phase contrast cine magnetic resonance imaging. Magnetic Resonance Quarterly, 7: 229–254, Oct 1991.
[21] M. Persson, J. E. Solem, K. Markenroth, J. Svensson, and A. Heyden, Phase contrast MRI segmentation using velocity and intensity. Scale Space and PDE Methods in Computer Vision, 3459: 119–130, Mar 2005.
[22] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch, The state of the art in flow visualisation: feature extraction and tracking. Computer Graphics Forum, 22 (4): 775–792, 2003.
[23] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical recipes in C. Cambridge University Press, 2nd edition, 1992.
[24] N. Shahcheraghi, H. A. Dwyer, A. Y. Cheer, A. I. Barakat, and T. Ruta-ganira, Unsteady and three-dimensional simulation of blood flow in the human aortic arch. Biomechinical Engineering, 124: 378–387, Aug 2002.
[25] K. Shi, H. Theisel, H. Hauser, T. Weinkauf, K. Matkovic, H.-C. Hege, and H.-P. Seidel, Path line attributes - an information visualization approach to analyzing the dynamic behavior of 3d time-dependent flow fields. In Topology-Based Methods in Visualization II, pages 75–88, 2009.
[26] T. S. Sørensen, H. K. Philipp Beerbaum, and E. M. Pedersen, Three-dimensional, isotropic MRI: a unified approach to quantification and visualization in congenital heart disease. The International Journal of Cardiovascular Imaging, 21 (2): 283–292, Apr 2005.
[27] D. Stalling, M. Zockler, and H.-C. Hege, Fast display of illuminated field lines. IEEE Transactions on Visualization and Computer Graphics, 3: 118–128, 1997.
[28] R. Unterhinninghofen, S. Ley, J. Ley-Zaporozhan, H. von Tengg-Kobligk, M. Bock, H.-U. Kauczor, G. Szab, and R. Dillmann, Concepts for visualization of multidirectional phase-contrast MRI of the heart and large thoracic vessels. Academic Radiology, 15 (3): 361–369, 2008.
[29] S. Uribe, P. Beerbaum, T. S. Sørensen, A. Rasmusson, R. Razavi, and T. Schaeffter, Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating. Magnetic Resonance in Medicine, 62 (4): 984–92, Oct 2009.
[30] A. Vilanova, G. Berenschot, and C. van Pul, DTI visualization with streamsurfaces and evenly-spaced volume seeding. In Proceedings of VisSym '04, pages 173–182, 2004.
[31] T. Weinkauf, Extraction of topological structures in 2D and 3D vector fields. PhD thesis, University Magdeburg, 2008.
[32] L. Wigstrom, T. Ebbers, A. Fyrenius, M. Karlsson, J. Engvall, B. Wranne, and A. F. Bolger, Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI. Magnetic Resonance in Medicine, 41: 793–799, Apr 1999.
[33] P. A. Yushkevich, J. Piven, C. Hazlett, H. Smith, G. Smith, R. Ho, S. Ho, J. C. Gee, and G. Gerig, User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage, 31 (3): 1116–1128, 2006.

Index Terms:
4D MRI blood-flow, Probing, Flow visualization, Illustrative visualization, Phase-contrast cine MRI
Roy van Pelt, Javier Oliván Bescós, Marcel Breeuwer, Rachel E. Clough, M. Eduard Gröller, Bart ter Haar Romenij, Anna Vilanova, "Exploration of 4D MRI Blood Flow using Stylistic Visualization," IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 1339-1347, Nov.-Dec. 2010, doi:10.1109/TVCG.2010.153
Usage of this product signifies your acceptance of the Terms of Use.