
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
S Gerber, P Bremer, V Pascucci, R Whitaker, "Visual Exploration of High Dimensional Scalar Functions," IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 12711280, November/December, 2010.  
BibTex  x  
@article{ 10.1109/TVCG.2010.213, author = {S Gerber and P Bremer and V Pascucci and R Whitaker}, title = {Visual Exploration of High Dimensional Scalar Functions}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {16}, number = {6}, issn = {10772626}, year = {2010}, pages = {12711280}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.213}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Visual Exploration of High Dimensional Scalar Functions IS  6 SN  10772626 SP1271 EP1280 EPD  12711280 A1  S Gerber, A1  P Bremer, A1  V Pascucci, A1  R Whitaker, PY  2010 KW  Crystals KW  Manifolds KW  Approximation methods KW  Data visualization KW  Kernel KW  Geometry KW  Concrete KW  MorseSmale complex KW  Morse theory KW  Highdimensional visualization VL  16 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] D.F. Andrews, Plots of highdimensional data. Biometrics, 28 (1): 125–136, 1972.
[2] D. Asimov, The grand tour: a tool for viewing multidimensional data. SIAM J. Sci. Stat. Comput., 6 (1): 128–143, 1985.
[3] S. A. Barron, L. Jacobs, and W. R. Kinkel, Changes in size of normal lateral ventricles during aging determined by computerized tomography. Neurology, 26 (11): 1011–,1976.
[4] L. E. Baum and P. Billingsley, Asymptotic distributions for the coupon collector's problem. Ann. Math. Stat., 36: 1835–1839, 1965.
[5] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput., 15 (6): 1373–1396, 2003.
[6] S. Beucher, Watersheds of functions and picture segmentation. In Proc. IEEE ICASSP, pages 1928–1931, 1982.
[7] R. L. Boyell and H. Ruston, Hybrid techniques for realtime radar simulation. In Proc. 1963 Fall Joint Comp. Conf., pages 445–458, 1963.
[8] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.
[9] P.T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, A topological hierarchy for functions on triangulated surfaces. IEEE Trans. on Vis. and Comp. Graphics, 10 (4): 385–396, 2004.
[10] P.T. Bremer, G. Weber, V. Pascucci, M. Day, and J. Bell, Analyzing and tracking burning structures in lean premixed hydrogen flames. IEEE Trans. on Vis. and Comp. Graphics, 16 (2): 248–260, 2010.
[11] H. Carr, J. Snoeyink, and U. Axen, Computing contour trees in all dimensions. Comput. Geom. Theory Appl., 24 (3): 75–94, 2003.
[12] H. Carr, J. Snoeyink, and M. van de Panne, Simplifying flexible isosurfaces using local geometric measures. In IEEE Visualization'04, pages 497–504. IEEE Computer Society, 2004.
[13] P. Chaudhuri, M. ching Huang, W. yin Loh, and R. Yao, Piecewisepolynomial regression trees. Statistica Sinica, 4: 143–167, 1994.
[14] F. Chazal, L. Guibas, S. Oudot, and P. Skraba, Analysis of scalar fields over point cloud data. In SODA'09: Proceedings of the twentieth Annual ACMSIAM Symposium on Discrete Algorithms, pages 1021–1030, 2009.
[15] F. Chazal, L. Guibas, S. Oudot, and P. Skraba, Persistencebased clustering in riemannian manifolds. Technical Report RR6968, INRIA, 2009.
[16] Y. Cheng, Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell., 17 (8): 790–799, 1995.
[17] W. S. Cleveland, LOWESS: A Program for Smoothing Scatterplots by Robust Locally Weighted Regression. Amer. Statistician, 35: 54, 1981.
[18] D. CohenSteiner, H. Edelsbrunner, and Y. Harer, Stability of persistence diagrams. Discrete Comput. Geom., 37 (1): 103–120, 2007.
[19] D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space analysis. IEEE TPAMI, 24: 603–619, 2002.
[20] M. M.W. Conover and R. Beckman, comparison of three methods for selection values of input variables in the analysis of output from a computer code. Technometrics, 22 (2): 239–245, 1978.
[21] M. de Leon, A. George, B. Reisberg, S. Ferris, A. Kluger, L. Stylopoulos, J. Miller, M. La Regina, C. Chen, and J. Cohen, Alzheimer's disease: longitudinal CT studies of ventricular change. Am. J. Roentgenol. 152 (6): 1257–1262, 1989.
[22] H. Digabel and C. Lantuejoul, Iterative algorithms. In Proc. Symp. Quantitative Analysis of Microstructures in Material Science, Biology and Medicine, pages 85–99, 1978.
[23] H. Edelsbrunner, J. Harer, and A. Zomorodian, Hierarchical MorseSmale complexes for piecewise linear 2manifolds. Discrete Comput. Geom., 30: 87–107, 2003.
[24] J. Friedman and J. Tukey, A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput, C23 (9): 881–890, 9 1974.
[25] J. H. Friedman, Multivariate adaptive regression splines. Ann. Statist. 19 (1): 1–141, 1991. With discussion and a rejoinder by the author.
[26] K. Fukunaga, Introduction to statistical pattern recognition. Academic Press, 2nd edition, 1990.
[27] K. Fukunaga and L. Hostetler, The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Information Theory, 21: 32–40, 1975.
[28] Y. Gyulassy, M. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa, A. Higginbotham, and B. Hamann, Topologically clean distance fields. IEEE TVCG, 13 (6): 1432–1439, 2007.
[29] A. Gyulassy, V. Natarajan, V. Pascucci, P.T. Bremer, and B. Hamann, Topologybased simplification for feature extraction from 3D scalar fields. IEEE TVCG, 12 (4): 474–484, 2006.
[30] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann, Efficient computation of MorseSmale complexes for threedimensional scalar functions. IEEE TVCG, 13 (6): 1440–1447, 2007.
[31] W. Harvey and Y. Wang, Generating and exploring a collection of topological landscapes for visualization of scalarvalued functions. In Proc. Symposium on Visualization, volume 29, page to appear, 2010.
[32] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H. Chen, Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal co/h2 kinetics. Proceedings of the Combustion Institute, 31 (1): 1633–1640, 2007.
[33] G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science, 313 (5786): 504–507, July 2006.
[34] A. Inselberg, The plane with parallel coordinates. The Visual Computer, 1 (2): 69–91, August 1985.
[35] T. Itoh and K. Koyamada, Automatic isosurface propagation using an extrema graph and sorted boundary cell lists. IEEE Trans. Vis. and Comp. Graph., 1 (4): 319–327, 1995.
[36] I. T. Jolliffe, Principal Component Analysis. SpringerVerlag, 1986.
[37] J. Kiehl, C. Shields, J. Hack, and W. Collins, The climate sensitivity of the community climate system model version 3 (ccsm3). Climate, 19 (11): 2584–2596, 2006.
[38] D. Laney, P.T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci, Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE TVCG, 12 (5): 1052–1060, 2006.
[39] J. X. Li, Visualization of highdimensional data with relational perspective map. Information Visualization, 3 (1): 49–59, 2004.
[40] F. Maisonneuve, Sur le partage des eaux. Technical report, School of Mines, Paris, France, 1982.
[41] J. Milnor, Morse Theory. Princeton University Press, New Jersey, 1963.
[42] M. Morse, Relations between the critical points of a real functions of n independent variables. Transactions of the American Mathematical Society, 27: 345–396, July 1925.
[43] E. A. Nadaraya, On estimating regression. Theory of Probability and its Applications, 9 (1): 141–142, 1964.
[44] P. Oesterling, C. Heine, H. Janicke, and G. Scheuermann, Visual analysis of high dimensional point clouds using topological landscape. In Proc. IEEE Pacific Visualization, page to appear, 2010.
[45] V. Pascucci, G. Scorzelli, P.T. Bremer, and A. Mascarenhas, Robust online computation of reeb graphs: simplicity and speed. ACM Trans. Graph., 26 (3): 58, 2007.
[46] G. Reeb, Sur les points singuliers d'une forme de pfaff completement intergrable ou d'une fonction numerique [on the singular points of a complete integral pfaff form or of a numerical function]. Comptes Rendus Acad.Science Paris, 222: 847–849, 1946.
[47] S. Roweis and L. Saul, Nonlinear dimensionality reduction by locally linear embedding. Science, 290 (550), 2000.
[48] G. Schwarz, Estimating the dimension of a model. Ann. Statist., 6 (2): 461–464, 1978.
[49] Y. Sheikh, E. Kahn, and T. Kanade, Modeseeking by medoidshifts. In Proc. IEEE International Conference on Computer Vision, 2006.
[50] J. B. Tenenbaum, V. de Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction. Science, 290 (550): 2319–2323, 2000.
[51] L. Tomassini, P. Reichert, R. Knutti, T. Sticker, and M. Borsuk, Robust bayesian uncertainty analysis of climate system properties using markov chain monte carlo methods. Climate, 20 (7): 1239–1254, 2006.
[52] A. Vedaldi and S. Soatto, Quick shift and kernel methods for mode seeking. In Proc. European Conf. on Computer Vision, pages 705–718, 2008.
[53] L. Vincent and P. Soille, Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell., 13 (6): 583–598, 1991.
[54] J. A. Walter and H. Ritter, On interactive visualization of highdimensional data using the hyperbolic plane. In KDD'02: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 123–132, 2002.
[55] G. Watson, Smooth regression analysis. Sankhya, Series, A (26): 359–372, 1964.
[56] G. Weber, P.T. Bremer, and V. Pascucci, Topological landscapes: A terrain metaphor for scientific data. IEEE Transactions on Visualization and Computer Graphics, 13: 1416–1423, 2007.
[57] M. Webster, C. Forest, J. Reilly, M. Babiker, D. Kicklighter, M. Mayer, R. Prinn, M. Sarofim, A. Sokolov, P. Stone, and C. Wang, Uncertainty analysis of climate change and policy response. Climate Change, 61 (3): 295–320, 2003.
[58] C.C. Yang, C.C. Chiang, Y.P. Hung, and G. C. Lee, Visualization for highdimensional data: Vishd. In IV, pages 692696, Washington, DC, USA, 2005. IEEE.
[59] I. C. Yeh, Modeling of strength of highperformance concrete using artificial neural networks. Cement and Concrete Research, 28 (12): 1797–1808, 1998.
[60] X. Zhu, R. Sarkar, and J. Gao, Shape segmentation and applications in sensor networks. In Proc. INFOCOM, pages 1838–1846, 2007.