The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.06 - November/December (2010 vol.16)
pp: 1271-1280
S Gerber , Sci. Comput. & Imaging Inst., Univ. of Utah, Salt Lake City, UT, USA
P Bremer , Lawrence Livermore Nat. Lab., Center of Appl. Sci. Comput. (CASC), Livermore, CA, USA
V Pascucci , Sci. Comput. & Imaging Inst., Univ. of Utah, Salt Lake City, UT, USA
R Whitaker , Sci. Comput. & Imaging Inst., Univ. of Utah, Salt Lake City, UT, USA
ABSTRACT
An important goal of scientific data analysis is to understand the behavior of a system or process based on a sample of the system. In many instances it is possible to observe both input parameters and system outputs, and characterize the system as a high-dimensional function. Such data sets arise, for instance, in large numerical simulations, as energy landscapes in optimization problems, or in the analysis of image data relating to biological or medical parameters. This paper proposes an approach to analyze and visualizing such data sets. The proposed method combines topological and geometric techniques to provide interactive visualizations of discretely sampled high-dimensional scalar fields. The method relies on a segmentation of the parameter space using an approximate Morse-Smale complex on the cloud of point samples. For each crystal of the Morse-Smale complex, a regression of the system parameters with respect to the output yields a curve in the parameter space. The result is a simplified geometric representation of the Morse-Smale complex in the high dimensional input domain. Finally, the geometric representation is embedded in 2D, using dimension reduction, to provide a visualization platform. The geometric properties of the regression curves enable the visualization of additional information about each crystal such as local and global shape, width, length, and sampling densities. The method is illustrated on several synthetic examples of two dimensional functions. Two use cases, using data sets from the UCI machine learning repository, demonstrate the utility of the proposed approach on real data. Finally, in collaboration with domain experts the proposed method is applied to two scientific challenges. The analysis of parameters of climate simulations and their relationship to predicted global energy flux and the concentrations of chemical species in a combustion simulation and their integration with temperature.
INDEX TERMS
Crystals, Manifolds, Approximation methods, Data visualization, Kernel, Geometry, Concrete, Morse-Smale complex, Morse theory, High-dimensional visualization
CITATION
S Gerber, P Bremer, V Pascucci, R Whitaker, "Visual Exploration of High Dimensional Scalar Functions", IEEE Transactions on Visualization & Computer Graphics, vol.16, no. 6, pp. 1271-1280, November/December 2010, doi:10.1109/TVCG.2010.213
REFERENCES
[1] D.F. Andrews, Plots of high-dimensional data. Biometrics, 28 (1): 125–136, 1972.
[2] D. Asimov, The grand tour: a tool for viewing multidimensional data. SIAM J. Sci. Stat. Comput., 6 (1): 128–143, 1985.
[3] S. A. Barron, L. Jacobs, and W. R. Kinkel, Changes in size of normal lateral ventricles during aging determined by computerized tomography. Neurology, 26 (11): 1011–,1976.
[4] L. E. Baum and P. Billingsley, Asymptotic distributions for the coupon collector's problem. Ann. Math. Stat., 36: 1835–1839, 1965.
[5] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput., 15 (6): 1373–1396, 2003.
[6] S. Beucher, Watersheds of functions and picture segmentation. In Proc. IEEE ICASSP, pages 1928–1931, 1982.
[7] R. L. Boyell and H. Ruston, Hybrid techniques for real-time radar simulation. In Proc. 1963 Fall Joint Comp. Conf., pages 445–458, 1963.
[8] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.
[9] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, A topological hierarchy for functions on triangulated surfaces. IEEE Trans. on Vis. and Comp. Graphics, 10 (4): 385–396, 2004.
[10] P.-T. Bremer, G. Weber, V. Pascucci, M. Day, and J. Bell, Analyzing and tracking burning structures in lean premixed hydrogen flames. IEEE Trans. on Vis. and Comp. Graphics, 16 (2): 248–260, 2010.
[11] H. Carr, J. Snoeyink, and U. Axen, Computing contour trees in all dimensions. Comput. Geom. Theory Appl., 24 (3): 75–94, 2003.
[12] H. Carr, J. Snoeyink, and M. van de Panne, Simplifying flexible isosur-faces using local geometric measures. In IEEE Visualization'04, pages 497–504. IEEE Computer Society, 2004.
[13] P. Chaudhuri, M. ching Huang, W. yin Loh, and R. Yao, Piecewise-polynomial regression trees. Statistica Sinica, 4: 143–167, 1994.
[14] F. Chazal, L. Guibas, S. Oudot, and P. Skraba, Analysis of scalar fields over point cloud data. In SODA'09: Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1021–1030, 2009.
[15] F. Chazal, L. Guibas, S. Oudot, and P. Skraba, Persistence-based clustering in riemannian manifolds. Technical Report RR-6968, INRIA, 2009.
[16] Y. Cheng, Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell., 17 (8): 790–799, 1995.
[17] W. S. Cleveland, LOWESS: A Program for Smoothing Scatterplots by Robust Locally Weighted Regression. Amer. Statistician, 35: 54, 1981.
[18] D. Cohen-Steiner, H. Edelsbrunner, and Y. Harer, Stability of persistence diagrams. Discrete Comput. Geom., 37 (1): 103–120, 2007.
[19] D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space analysis. IEEE TPAMI, 24: 603–619, 2002.
[20] M. M.W. Conover and R. Beckman, comparison of three methods for selection values of input variables in the analysis of output from a computer code. Technometrics, 22 (2): 239–245, 1978.
[21] M. de Leon, A. George, B. Reisberg, S. Ferris, A. Kluger, L. Stylopoulos, J. Miller, M. La Regina, C. Chen, and J. Cohen, Alzheimer's disease: longitudinal CT studies of ventricular change. Am. J. Roentgenol. 152 (6): 1257–1262, 1989.
[22] H. Digabel and C. Lantuejoul, Iterative algorithms. In Proc. Symp. Quantitative Analysis of Microstructures in Material Science, Biology and Medicine, pages 85–99, 1978.
[23] H. Edelsbrunner, J. Harer, and A. Zomorodian, Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom., 30: 87–107, 2003.
[24] J. Friedman and J. Tukey, A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput, C-23 (9): 881–890, 9 1974.
[25] J. H. Friedman, Multivariate adaptive regression splines. Ann. Statist. 19 (1): 1–141, 1991. With discussion and a rejoinder by the author.
[26] K. Fukunaga, Introduction to statistical pattern recognition. Academic Press, 2nd edition, 1990.
[27] K. Fukunaga and L. Hostetler, The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Information Theory, 21: 32–40, 1975.
[28] Y. Gyulassy, M. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa, A. Higginbotham, and B. Hamann, Topologically clean distance fields. IEEE TVCG, 13 (6): 1432–1439, 2007.
[29] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann, Topology-based simplification for feature extraction from 3D scalar fields. IEEE TVCG, 12 (4): 474–484, 2006.
[30] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann, Efficient computation of Morse-Smale complexes for three-dimensional scalar functions. IEEE TVCG, 13 (6): 1440–1447, 2007.
[31] W. Harvey and Y. Wang, Generating and exploring a collection of topo-logical landscapes for visualization of scalar-valued functions. In Proc. Symposium on Visualization, volume 29, page to appear, 2010.
[32] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H. Chen, Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal co/h2 kinetics. Proceedings of the Combustion Institute, 31 (1): 1633–1640, 2007.
[33] G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science, 313 (5786): 504–507, July 2006.
[34] A. Inselberg, The plane with parallel coordinates. The Visual Computer, 1 (2): 69–91, August 1985.
[35] T. Itoh and K. Koyamada, Automatic isosurface propagation using an extrema graph and sorted boundary cell lists. IEEE Trans. Vis. and Comp. Graph., 1 (4): 319–327, 1995.
[36] I. T. Jolliffe, Principal Component Analysis. Springer-Verlag, 1986.
[37] J. Kiehl, C. Shields, J. Hack, and W. Collins, The climate sensitivity of the community climate system model version 3 (ccsm3). Climate, 19 (11): 2584–2596, 2006.
[38] D. Laney, P.-T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci, Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE TVCG, 12 (5): 1052–1060, 2006.
[39] J. X. Li, Visualization of high-dimensional data with relational perspective map. Information Visualization, 3 (1): 49–59, 2004.
[40] F. Maisonneuve, Sur le partage des eaux. Technical report, School of Mines, Paris, France, 1982.
[41] J. Milnor, Morse Theory. Princeton University Press, New Jersey, 1963.
[42] M. Morse, Relations between the critical points of a real functions of n independent variables. Transactions of the American Mathematical Society, 27: 345–396, July 1925.
[43] E. A. Nadaraya, On estimating regression. Theory of Probability and its Applications, 9 (1): 141–142, 1964.
[44] P. Oesterling, C. Heine, H. Janicke, and G. Scheuermann, Visual analysis of high dimensional point clouds using topological landscape. In Proc. IEEE Pacific Visualization, page to appear, 2010.
[45] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas, Robust on-line computation of reeb graphs: simplicity and speed. ACM Trans. Graph., 26 (3): 58, 2007.
[46] G. Reeb, Sur les points singuliers d'une forme de pfaff completement intergrable ou d'une fonction numerique [on the singular points of a complete integral pfaff form or of a numerical function]. Comptes Rendus Acad.Science Paris, 222: 847–849, 1946.
[47] S. Roweis and L. Saul, Nonlinear dimensionality reduction by locally linear embedding. Science, 290 (550), 2000.
[48] G. Schwarz, Estimating the dimension of a model. Ann. Statist., 6 (2): 461–464, 1978.
[49] Y. Sheikh, E. Kahn, and T. Kanade, Mode-seeking by medoidshifts. In Proc. IEEE International Conference on Computer Vision, 2006.
[50] J. B. Tenenbaum, V. de Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction. Science, 290 (550): 2319–2323, 2000.
[51] L. Tomassini, P. Reichert, R. Knutti, T. Sticker, and M. Borsuk, Robust bayesian uncertainty analysis of climate system properties using markov chain monte carlo methods. Climate, 20 (7): 1239–1254, 2006.
[52] A. Vedaldi and S. Soatto, Quick shift and kernel methods for mode seeking. In Proc. European Conf. on Computer Vision, pages 705–718, 2008.
[53] L. Vincent and P. Soille, Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell., 13 (6): 583–598, 1991.
[54] J. A. Walter and H. Ritter, On interactive visualization of high-dimensional data using the hyperbolic plane. In KDD'02: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 123–132, 2002.
[55] G. Watson, Smooth regression analysis. Sankhya, Series, A (26): 359–372, 1964.
[56] G. Weber, P.-T. Bremer, and V. Pascucci, Topological landscapes: A terrain metaphor for scientific data. IEEE Transactions on Visualization and Computer Graphics, 13: 1416–1423, 2007.
[57] M. Webster, C. Forest, J. Reilly, M. Babiker, D. Kicklighter, M. Mayer, R. Prinn, M. Sarofim, A. Sokolov, P. Stone, and C. Wang, Uncertainty analysis of climate change and policy response. Climate Change, 61 (3): 295–320, 2003.
[58] C.-C. Yang, C.-C. Chiang, Y.-P. Hung, and G. C. Lee, Visualization for high-dimensional data: Vishd. In IV, pages 692-696, Washington, DC, USA, 2005. IEEE.
[59] I. C. Yeh, Modeling of strength of high-performance concrete using artificial neural networks. Cement and Concrete Research, 28 (12): 1797–1808, 1998.
[60] X. Zhu, R. Sarkar, and J. Gao, Shape segmentation and applications in sensor networks. In Proc. INFOCOM, pages 1838–1846, 2007.
24 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool