
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Tino Weinkauf, Holger Theisel, "Streak Lines as Tangent Curves of a Derived Vector Field," IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 12251234, November/December, 2010.  
BibTex  x  
@article{ 10.1109/TVCG.2010.198, author = {Tino Weinkauf and Holger Theisel}, title = {Streak Lines as Tangent Curves of a Derived Vector Field}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {16}, number = {6}, issn = {10772626}, year = {2010}, pages = {12251234}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.198}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Streak Lines as Tangent Curves of a Derived Vector Field IS  6 SN  10772626 SP1225 EP1234 EPD  12251234 A1  Tino Weinkauf, A1  Holger Theisel, PY  2010 KW  unsteady flow visualization KW  streak lines KW  streak surfaces KW  feature extraction VL  16 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] D. Bauer and R. Peikert, Vortex tracking in scale space. In Data Visualization 2002. Proc. VisSym 02, pages 233–240, 2002.
[2] S. L. Brunton and C. W. Rowley, Fast computation of finitetime Lyapunov exponent fields for unsteady flows. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(1):017503, 2010.
[3] K. Bürger, F. Ferstl, H. Theisel, and R. Westermann, Interactive streak surface visualization on the GPU. IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE Visualization), 15 (6): 1259–1266, 2009.
[4] S. Camarri, M.V. Salvetti, M. Buffoni, and A. Iollo, Simulation of the threedimensional flow around a square cylinder between parallel walls at moderate Reynolds numbers. In XVII Congresso di Meccanica Teorica edApplicata, 2005.
[5] N. Cuntz, A. Kolb, R. Strzodka, and D. Weiskopf, Particle level set advection for the interactive visualization of unsteady 3D flow. Computer Graphics Forum (Proc. Eurovis), 27 (3): 719–726, 2008.
[6] N. Cuntz, A. Pritzkau, and A. Kolb, Timeadaptive lines for the interactive visualization of unsteady flow data sets. Computer Graphics Forum, 28 (8): 2165–2175, 2009.
[7] C. Garth, F. Gerhardt, X. Tricoche, and H. Hagen, Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization 2007), 13 (6): 1464–1471, 2007.
[8] C. Garth, H. Krishnan, X. Tricoche, T. Tricoche, and K. I. Joy, Generation of accurate integral surfaces in timedependent vector fields. IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE Visualization), 14 (6): 1404–1411, 2008.
[9] G. Haller, Distinguished material surfaces and coherent structures in threedimensional fluid flows. Physica D, 149 (4): 248–277, 2001.
[10] J. Hultquist, Constructing stream surfaces in steady 3D vector fields. In Proc. IEEE Visualization '92, pages 171–177, 1992.
[11] International CFD Database, http://cfd.cineca.it/.
[12] B. Jobard and W. Lefer, Creating evenlyspaced streamlines of arbitrary density. In Proceedings 8th Eurographics Workshop on Visualization in Scientific Computing, pages 57–66, Boulogne, 1997.
[13] J. Kasten, C. Petz, I. Hotz, B. Noack, and H.C. Hege, Localized finitetime Lyapunov exponent for unsteady flow analysis. In Proc. Vision, Modeling and Visualization, pages 265–274, 2009.
[14] H. Krishnan, C. Garth, and K. Joy, Time and streak surfaces for flow visualization in large timevarying data sets. IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE Visualization), 15(6): 1267–1274, 2009.
[15] A. Mebarki, P. Alliez, and O. Devillers, Farthest point seeding for efficient placement of streamlines. In Proc. IEEE Visualization 2005, pages 479–486, 2005.
[16] R. Peikert, 2009. private communication.
[17] R. Peikert and M. Roth, The parallel vectors operator  a vector field visualization primitive. In Proc. IEEE Visualization 99, pages 263–270, 1999.
[18] S. Popinet, Free computational fluid dynamics. ClusterWorld, 2(6), 2004.
[19] O. Rosanwo, C. Petz, S. Prohaska, I. Hotz, and H.C. Hege, Dual streamline seeding. In Proc. IEEE Pacific Visualization, pages 9–16, 2009.
[20] F. Sadlo and R. Peikert, Efficient visualization of Lagrangian coherent structures by filtered AMR ridge extraction. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization 2007), 13 (6): 1456–1463, 2007.
[21] F. Sadlo and D. Weiskopf, Timedependent 2D vector field topology: An approach inspired by Lagrangian coherent structures. Computer Graphics Forum, 29 (1): 88–100, 2010.
[22] A. Sanna, B. Montrucchio, and R. Arinaz, Visualizing unsteady flows by adaptive streaklines. In Proc. WSCG'2000, Plzen, Czech Republic, 2000.
[23] D. Schneider, A. Wiebel, and G. Scheuermann, Smooth stream surfaces of fourth order precision. Computer Graphics Forum (Proc. EuroVis), 28 (3): 871–878, 2009.
[24] K. Shi, H. Theisel, H. Hauser, T. Weinkauf, K. Matkovic, H.C. Hege, and H.P. Seidel, Path line attributes  an information visualization approach to analyzing the dynamic behavior of 3D timedependent flow fields. In H.C. Hege, K. Polthier, and G. Scheuermann editors TopologyBased Methods in Visualization II,, Mathematics and Visualization, pages 75–88. Springer, 2009. TopoInVis 2007, Grimma, Germany, March 4  6.
[25] K. Shi, H. Theisel, T. Weinkauf, H. Hauser, H.C. Hege, and H.P. Seidel, Path line oriented topology for periodic 2D timedependent vector fields. In Proc. Eurographics /IEEE VGTC Symposium on Visualization (EuroVis '06), pages 139–146, Lisbon, Portugal, 2006.
[26] D. Stalling, Fast Texturebased Algorithms for Vector Field Visualization. PhD thesis, FU Berlin, Department of Mathematics and Computer Science, 1998.
[27] D. Sujudi and R. Haimes, Identification of swirling flow in 3D vector fields. Technical report, Department of Aeronautics and Astronautics, MIT, 1995. AIAA Paper 95–1715.
[28] H. Theisel, Vector Field Curvature and Applications. PhD thesis, University of Rostock, 1995.
[29] H. Theisel, J. Sahner, T. Weinkauf, H.C. Hege, and H.P. Seidel, Extraction of parallel vector surfaces in 3D timedependent fields and application to vortex core line tracking. In Proc. IEEE Visualization 2005, pages 631–638, 2005.
[30] H. Theisel, T. Weinkauf, H.C. Hege, and H.P. Seidel, Topological methods for 2D timedependent vector fields based on stream lines and path lines. IEEE Transactions on Visualization and Computer Graphics, 11 (4): 383–394, 2005.
[31] G. Turk and D. Banks, Imageguided streamline placement. In Proc. Siggraph '96, pages 453–460, 1996.
[32] W von Funck, T. Weinkauf, H. Theisel, and H.P. Seidel, Smoke surfaces: An interactive flow visualization technique inspired by realworld flow experiments. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization 2008), 14 (6): 1396–1403, 2008.
[33] T. Weinkauf, H.C. Hege, B. Noack, M. Schlegel, and A. Dillmann, Coherent structures in a transitional flow around a backwardfacing step. Physics of Fluids, 15(9):S3, 2003. Winning Entry from the Gallery of Fluid Motion 2003.
[34] T. Weinkauf, J. Sahner, H. Theisel, and H.C. Hege, Cores of swirling particle motion in unsteady flows. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization 2007), 13 (6): 1759–1766, 2007.
[35] T. Weinkauf and H. Theisel, Curvature measures of 3D vector fields and their applications. Journal of WSCG, 10 (2): 507–514, 2002.
[36] D. Weiskopf, Dye advection without the blur: A levelset approach for texturebased visualization of unsteady flow. Computer Graphics Forum (Eurographics 2004), 23 (3): 479–488, 2004.
[37] A. Wiebel, R. Chan, C. Wolf, A. Robitzki, A. Stevens, and G. Scheuermann, Topological flow structures in a mathematical model for rotationmediated cell aggregation. In Proc. TopoInVis 2009, page to appear, Snowbird, Utah, U.S.A., 2009.
[38] A. Wiebel, X. Tricoche, D. Schneider, H. Jaenicke, and G. Scheuermann, Generalized streak lines: Analysis and visualization of boundary induced vortices. IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE Visualization), 13(6): 1735–1742, 2007.