
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Marc Khoury, Rephael Wenger, "On the Fractal Dimension of Isosurfaces," IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 11981205, November/December, 2010.  
BibTex  x  
@article{ 10.1109/TVCG.2010.182, author = {Marc Khoury and Rephael Wenger}, title = {On the Fractal Dimension of Isosurfaces}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {16}, number = {6}, issn = {10772626}, year = {2010}, pages = {11981205}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.182}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  On the Fractal Dimension of Isosurfaces IS  6 SN  10772626 SP1198 EP1205 EPD  11981205 A1  Marc Khoury, A1  Rephael Wenger, PY  2010 KW  Isosurfaces KW  scalar data KW  fractal dimension VL  16 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] C. Bajaj, V. Pascucci, and D. Schikore, The contour spectrum. In Proc. of IEEE Visualization 1997, pages 167–173, 1997.
[2] P. Bhaniramka, R. Wenger, and R. Crawfis, Isosurface construction in any dimension using convex hulls. IEEE Transactions on Visualization and Computer Graphics, 10 (2): 130–141, Mar./Apr. 2004.
[3] J. Bloomenthal, An implicit surface polygonizer. In P. Heckbert editor, Graphics Gems IV, pages 324–349. Academic Press, Boston, MA, 1994.
[4] H. Carr, D. Brian, and D. Barry, On histograms and isosurface statistics. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 1259–1266, 2006.
[5] H. Carr, J. Snoeyink, and U. Axen, Computing contour trees in all dimensions. Computational Geometry: Theory and Applications, 24: 75–94, 2003.
[6] T.K. Dey and J. A. Levine, Delaunay meshing of isosurfaces. Shape Modeling and Applications, International Conference on, pages 241–250, 2007.
[7] K. Falconer, Fractal Geometry. John Wiley and Sons, West Sussex, England, second edition, 2003.
[8] S. F. F. Gibson, Constrained elastic surface nets: Generating smooth surfaces from binary segmented data. In MICCAI '98: Proceedings of the First International Conference on Medical Image Computing and ComputerAssisted Intervention, pages 888–898, London, UK, 1998. SpringerVerlag.
[9] T. Itoh and K. Koyamada, Automatic Isosurface Propagation Using an Extrema Graph and Sorted Boundary Cell Lists. IEEE Transactions on Visualization and Computer Graphics, 1 (4): 319–327, Dec. 1995.
[10] T. Ju, F. Losasso, S. Schaefer, and J. Warren, Dual contouring of hermite data. ACM Trans. Graph., 21 (3): 339–346, 2002.
[11] W. Lorensen and H. Cline, Marching cubes: a high resolution 3d surface construction algorithm. Comput. Graph., 21 (4): 163–170, 1987.
[12] C. Montani, R. Scateni, and S. Scopigno, A modified lookup table for implicit disambiguation of marching cubes. The Visual Computer, 10 (6): 353–355, Dec. 1994.
[13] T. S. Newman and H. Yi, A survey of the marching cubes algorithm. Computers and Graphics, 30 (5): 854–879, 2006.
[14] G. M. Nielson, On marching cubes. IEEE Transactions on Visualization and Computer Graphics, 9: 283–297, 2003.
[15] G.M. Nielson, Dual Marching Cubes. In Proc. of IEEE Visualization 2004, pages 489–496, 2004.
[16] G.M. Nielson and B. Hamann, The asymptotic decider: resolving the ambiguity in Marching Cubes. In VIS '91: Proceedings of the 2nd conference on Visualization '91, pages 83–91. IEEE Computer Society Press, 1991.
[17] V. Pekar, R. Wiemker, and D. Hempel, Fast detection of meaningful isosurfaces for volume data visualization. In VIS '01: Proceedings of the conference on Visualization '01, pages 223–230, Washington, DC, USA, 2001. IEEE Computer Society.
[18] C.E. Scheidegger, J. M. Schreiner, B. Duffy, H. Carr, and C. T. Silva, Revisiting histograms and isosurface statistics. IEEE Transactions on Visualization and Computer Graphics, 14 (6): 1659–1666, 2008.
[19] C. Weigle and D. Banks, Complexvalued contour meshing. In Proceedings of Visualization '96. IEEE Computer Society Press, 1996.
[20] G. Wyvill, C. McPheeters, and B. Wyvill, Data structure for soft objects. The Visual Computer, 2 (4): 227–234, 1986.