This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Stacking Graphic Elements to Avoid Over-Plotting
November/December 2010 (vol. 16 no. 6)
pp. 1044-1052
An ongoing challenge for information visualization is how to deal with over-plotting forced by ties or the relatively limitedvisual field of display devices. A popular solution is to represent local data density with area (bubble plots, treemaps), color(heatmaps), or aggregation (histograms, kernel densities, pixel displays). All of these methods have at least one of three deficiencies:1) magnitude judgments are biased because area and color have convex downward perceptual functions, 2) area, hue, and brightnesshave relatively restricted ranges of perceptual intensity compared to length representations, and/or 3) it is difficult to brush or link toindividual cases when viewing aggregations. In this paper, we introduce a new technique for visualizing and interacting with datasetsthat preserves density information by stacking overlapping cases. The overlapping data can be points or lines or other geometricelements, depending on the type of plot. We show real-dataset applications of this stacking paradigm and compare them to othertechniques that deal with over-plotting in high-dimensional displays.

[1] A. O. Artero, M. C. F. de Oliveira, and H. Levkowitz, Uncovering clusters in crowded parallel coordinates visualizations. In IEEE Symposium on Information Visualization, pages 81–88, 2004.
[2] R. A. Becker and W. S. Cleveland, Brushing Scatterplots. Technometrics, 29: 127–142, 1987.
[3] F. Bendix, R. Kosara, and H. Hauser, Parallel sets: Visual analysis of categorical data. In IEEE Symposium on Information Visualization, pages 133–140, 2005.
[4] C. A. Brewer, Guidelines for selecting colors for diverging schemes on maps. The Cartographic Journal, 33: 79–86, 1996.
[5] D. B. Carr, Looking at large data sets using binned data plots. In A. Buja, and P. Tukey editors, , Computing and Graphics in Statistics, pages 7–39. Springer-Verlag, New York, 1993.
[6] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey, Graphical Methods for Data Analysis. Chapman and Hall, New York, 1983.
[7] W. S. Cleveland, The Elements of Graphing Data. Hobart Press, Summit, NJ, 1985.
[8] W. S. Cleveland and R. McGill, Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 79: 531–554, 1984.
[9] R. J. M. Dawson, The "unusual episode" data revisited. Journal of Statistics Education, 3: 3, 1995.
[10] M. T. Gastner and M. E. J. Newman, Diffusion-based method for producing density equalizing maps. In Proceedings of the National Academy of Sciences, volume 101, pages 7499–7504, Washington, DC, USA, 2004. National Academy of Sciences.
[11] S. Havre, B. Hetzler, and L. Nowell, Themeriver: Visualizing theme changes over time. In Proceedings of the 2000 IEEE Symposium on Information Visualization, pages 115–123, Washington, DC, USA, 2000. IEEE Computer Society.
[12] J. Heinrich and D. Weiskopf, Continuous parallel coordinates. IEEE Transactions on Visualization and Computer Graphics, 15 6: 1531–1538, 2009.
[13] A. Inselberg, The plane with parallel coordinates. The Visual Computer, 1: 69–91, 1985.
[14] D. F. Jerding and J. T. Stasko, The information mural: A technique for displaying and navigating large information spaces. IEEE Transactions on Visualization and Computer Graphics, 4 3: 257–271, /1998.
[15] W S. Jevons, On the condition of the gold coinage of the United Kingdom, with reference to the question of international currency. Macmillan, London, 1884.
[16] J. Johansson, M. Cooper, and M. Jern, 3-dimensional display for clustered multi-relational parallel coordinates. In In Proceedings 9th IEEE International Conference on Information Visualization (2005, page 188, 2005.
[17] J. Johansson, P. Ljung, M. Jern, and M. Cooper, Revealing structure within clustered parallel coordinates displays. In IEEE Symposium on Information Visualization, pages 125–132, 2005.
[18] J. Johansson, P. Ljung, M. Jern, and M. Cooper, Revealing structure in visualizations of dense 2d and 3d parallel coordinates. Information Visualization, 5 (2): 125–136, 2006.
[19] A. Johnson, Utilities dataset. Personal communication, 2010.
[20] B. Johnson, and B. Shneiderman, Treemaps: A space-filling approach to the visualization of hierarchical information structures. In Proceedings of the IEEE Information Visualization '91, pages 275–282, 1991.
[21] D. A. Keim, Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics, 8 1: 1–8, 2002.
[22] A. F. Krieg, J. R. Beck, and M. Bongiovanni, The dot plot: A starting point for evaluating test performance. Journal of the American Medical Association, 260: 3309–3312, 1978.
[23] K. T. Mcdonnell and K. Mueller, Illustrative parallel coordinates. Computer Graphics Forum, 2008.
[24] K. Pearson, Maps and chartograms. Gresham Lecture, 1891.
[25] W Playfair, The commercial and political atlas and statistical breviary. Original edition (1786) edited and republished by H. Wainer, and I. Spence Cambridge University Press, Cambridge, 1786.
[26] J. F. Rodrigues, A. J. M. Traina, and C. Traina, Frequency plot and relevance plot to enhance visual data exploration. In Computer Graphics and Image Processing, pages 117–124, 2003.
[27] D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley & Sons, New York, 1992.
[28] B. Silverman, Density Estimation for Statistics and Data Analysis. Chapman & Hall, New York, 1986.
[29] M. Streit, R. C. Ecker, K. sterreicher, G. E. Steiner, H. Bischof, C. Bangert, T. Kopp, and R. Rogojanu, 3D parallel coordinate systems-a new data visualization method in the context of microscopy-based multicolor tissue cytometry. Cytometry Part A, 69A (7): 601–611, 2006.
[30] J. W Tukey, Exploratory Data Analysis. Addison-Wesley Publishing Company, Reading, MA, 1977.
[31] B. A. Turlach, Bandwidth selection in kernel density estimation: A review. In CORE and Institut de Statistique, 1993.
[32] C. Ware, Visual thinking for design. Morgan Kaufman, Burlington, MA, 2008.
[33] M. Wattenberg, Baby names, visualization, and social data analysis. In Proceedings of the 2005 IEEE Symposium on Information Visualization, page 1, Washington, DC, USA, 2005. IEEE Computer Society.
[34] E. J. Wegman, Hyperdimensional data analysis using parallel coordinates. Journal of the American Statistical Association, 85: 664–675, 1985.
[35] E. J. Wegman and Q. Luo, High dimensional clustering using parallel coordinates and the grand tour. Computing Science and Statistics, 28: 361–368, 1997.
[36] A. Wilhelm, User interaction at various levels of data displays. Computational Statistics and Data Analysis, 43 4: 471–494, 2003.
[37] L. Wilkinson, Dot plots. The American Statistician, 53: 276–281, 1999.
[38] L. Wilkinson, The Grammar of Graphics. Springer-Verlag, New York, 2nd edition, 2005.

Index Terms:
dot plots, Parallel coordinate plots, Multidimensional data, Density-based visualization
Citation:
Tuan Nhon Dang, Leland Wilkinson, Anushka Anand, "Stacking Graphic Elements to Avoid Over-Plotting," IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 1044-1052, Nov.-Dec. 2010, doi:10.1109/TVCG.2010.197
Usage of this product signifies your acceptance of the Terms of Use.