CSDL Home IEEE Transactions on Visualization & Computer Graphics 2010 vol.16 Issue No.04 - July/August

Subscribe

Issue No.04 - July/August (2010 vol.16)

pp: 636-646

Jakob Andreas Bærentzen , Technical University of Denmark, Lyngby

Rasmus Larsen , Technical University of Denmark, Lyngby

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.208

ABSTRACT

A method for implicit surface reconstruction is proposed. The novelty in this paper is the adaption of Markov Random Field regularization of a distance field. The Markov Random Field formulation allows us to integrate both knowledge about the type of surface we wish to reconstruct (the prior) and knowledge about data (the observation model) in an orthogonal fashion. Local models that account for both scene-specific knowledge and physical properties of the scanning device are described. Furthermore, how the optimal distance field can be computed is demonstrated using conjugate gradients, sparse Cholesky factorization, and a multiscale iterative optimization scheme. The method is demonstrated on a set of scanned human heads and, both in terms of accuracy and the ability to close holes, the proposed method is shown to have similar or superior performance when compared to current state-of-the-art algorithms.

INDEX TERMS

Bayesian approach, implicit surface, Markov random field, mesh generation, surface reconstruction.

CITATION

Jakob Andreas Bærentzen, Rasmus Larsen, "Markov Random Field Surface Reconstruction",

*IEEE Transactions on Visualization & Computer Graphics*, vol.16, no. 4, pp. 636-646, July/August 2010, doi:10.1109/TVCG.2009.208REFERENCES