
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Kenneth Weiss, Leila De Floriani, "Isodiamond Hierarchies: An Efficient Multiresolution Representation for Isosurfaces and Interval Volumes," IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 4, pp. 583598, July/August, 2010.  
BibTex  x  
@article{ 10.1109/TVCG.2010.29, author = {Kenneth Weiss and Leila De Floriani}, title = {Isodiamond Hierarchies: An Efficient Multiresolution Representation for Isosurfaces and Interval Volumes}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {16}, number = {4}, issn = {10772626}, year = {2010}, pages = {583598}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.29}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Isodiamond Hierarchies: An Efficient Multiresolution Representation for Isosurfaces and Interval Volumes IS  4 SN  10772626 SP583 EP598 EPD  583598 A1  Kenneth Weiss, A1  Leila De Floriani, PY  2010 KW  Isosurfaces KW  interval volumes KW  multiresolution models KW  longest edge bisection KW  diamond hierarchies. VL  16 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] L. De Floriani and P. Magillo, "Multiresolution Mesh Representation: Models and Data Structures," Principles of MultiResolution Geometric Modeling, SpringerVerlag, pp. 364418, 2002.
[2] K. Weiss and L. De Floriani, "Multiresolution Interval Volume Meshes," Proc. IEEE/EG Symp. Volume and PointBased Graphics, pp. 6572, 2008.
[3] J.M. Maubach, "Local Bisection Refinement for $n$ Simplicial Grids Generated by Reflection," SIAM J. Scientific Computing, vol. 16, no. 1, pp. 210227, Jan. 1995.
[4] L. De Floriani, E. Puppo, and P. Magillo, "A Formal Approach to MultiResolution Modeling," Geometric Modeling: Theory and Practice, SpringerVerlag, pp. 302323, 1997.
[5] P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno, "Selective Refinement Queries for Volume Visualization of Unstructured Tetrahedral Meshes," IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 1, pp. 2945, Jan. 2004.
[6] W. Lorensen and H. Cline, "Marching Cubes: A High Resolution 3D Surface Construction Algorithm," Proc. ACM SIGGRAPH '87, pp. 163169, 1987.
[7] G. Nielson and B. Hamann, "The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes," Proc. IEEE Workshop Visualization, pp. 8391, 1991.
[8] B. Payne and A. Toga, "Surface Mapping Brain Function on 3D Models," IEEE Computer Graphics and Applications, vol. 10, no. 5, pp. 3341, Sept. 1990.
[9] S. Gibson, "Constrained Elastic Surface Nets: Generating Smooth Surfaces from Binary Segmented Data," Proc. Int'l Conf. Medical Image Computing and ComputerAssisted Intervention (MICCAI), pp. 888898, 1998.
[10] T. Ju, F. Losasso, S. Schaefer, and J. Warren, "Dual Contouring of Hermite Data," ACM Trans. Graphics, vol. 21, no. 3, pp. 339346, 2002.
[11] I. Fujishiro, Y. Maeda, and H. Sato, "Interval Volume: A Solid Fitting Technique for Volumetric Data Display and Analysis," Proc. IEEE Workshop Visualization, pp. 151158, 1995.
[12] B. Guo, "Interval Set: A Volume Rendering Technique Generalizing Isosurface Extraction," Proc. IEEE Workshop Visualization, pp. 310, 1995.
[13] I. Fujishiro, Y. Maeda, H. Sato, and Y. Takeshima, "Volumetric Data Exploration Using Interval Volume," IEEE Trans. Visualization and Computer Graphics, vol. 2, no. 2, pp. 144155, June 1996.
[14] G.M. Nielson and J. Sung, "Interval Volume Tetrahedralization," Proc. IEEE Workshop Visualization, pp. 221228, 1997.
[15] P. Bhaniramka, R. Wenger, and R. Crawfis, "Isosurfacing in Higher Dimensions," Proc. IEEE Workshop Visualization, pp. 267273, Oct. 2000.
[16] P. Bhaniramka, C. Zhang, D. Xue, R. Crawfis, and R. Wenger, "Volume Interval Segmentation and Rendering," Proc. Volume Visualization Symp., 2004.
[17] Y. Zhang, C. Bajaj, and B. Sohn, "Adaptive and Quality 3D Meshing from Imaging Data," Proc. ACM Symp. Solid Modeling and Applications, pp. 286291, 2003.
[18] J. Wilhelms and A.V. Gelder, "Octrees for Faster Isosurface Generation," ACM Trans. Graphics, vol. 11, no. 3, pp. 201227, 1992.
[19] R. Shekhar, E. Fayyad, R. Yagel, and J. Cornhill, "OctreeBased Decimation of Marching Cubes Surfaces," Proc. IEEE Workshop Visualization, pp. 335342, 1996.
[20] R. Westermann, L. Kobbelt, and T. Ertl, "RealTime Exploration of Regular Volume Data by Adaptive Reconstruction of Isosurfaces," Visual Computer, vol. 15, no. 2, pp. 100111, 1999.
[21] M. Kazhdan, A. Klein, K. Dalal, and H. Hoppe, "Unconstrained Isosurface Extraction on Arbitrary Octrees," Proc. Eurographics Symp. Geometry Processing, pp. 125133, 2007.
[22] S.F. Frisken, R.N. Perry, A.P. Rockwood, and T.R. Jones, "Adaptively Sampled Distance Fields: A General Representation of Shape for Computer Graphics," Proc. ACM SIGGRAPH '00, pp. 249254, July 2000.
[23] Y. Zhou, B. Chen, and A. Kaufman, "MultiResolution Tetrahedral Framework for Visualizing Regular Volume Data," Proc. IEEE Workshop Visualization, R. Yagel and H. Hagen, eds., pp. 135142, Oct. 1997.
[24] T. Gerstner and M. Rumpf, "Multiresolutional Parallel Isosurface Extraction Based on Tetrahedral Bisection," Proc. Volume Visualization Symp., pp. 267278, 1999.
[25] T. Gerstner and R. Pajarola, "TopologyPreserving and Controlled Topology Simplifying MultiResolution Isosurface Extraction," Proc. IEEE Workshop Visualization, pp. 259266, 2000.
[26] M. Lee, L. De Floriani, and H. Samet, "ConstantTime Neighbor Finding in Hierarchical Tetrahedral Meshes," Proc. Int'l Conf. Shape Modeling, pp. 286295, May 2001.
[27] B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. Joy, "Interactive ViewDependent Rendering of Large Isosurfaces," Proc. IEEE Workshop Visualization, pp. 475484, Oct. 2002.
[28] M. Duchaineau, M. Wolinsky, D.E. Sigeti, M.C. Miller, C. Aldrich, and M.B. MineevWeinstein, "ROAMing Terrain: RealTime Optimally Adapting Meshes," Proc. IEEE Workshop Visualization, pp. 8188, Oct. 1997.
[29] K. Weiss and L. De Floriani, "Supercubes: A HighLevel Primitive for Diamond Hierarchies," IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 6, pp. 16031610, Nov./Dec. 2009.
[30] V. Mello, L. Velho, and G. Taubin, "Estimating the in/out Function of a Surface Represented by Points," Proc. Symp. Solid Modeling and Applications, pp. 108114, 2003.
[31] A. Gress and R. Klein, "Efficient Representation and Extraction of 2Manifold Isosurfaces Using kdTrees," Graphical Models, special issue on pacific graphics, vol. 66, no. 6, pp. 370397, 2004.
[32] S. Schaefer, T. Ju, and J. Warren, "Manifold Dual Contouring," IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 3, pp. 610619, May/June 2007.
[33] T. Ju and T. Udeshi, "IntersectionFree Contouring on an Octree Grid," Proc. Pacific Conf. Computer Graphics and Applications (Pacific Graphics), 2006.
[34] V. Pascucci and C.L. Bajaj, "TimeCritical Isosurface Refinement and Smoothing," Proc. IEEE Volume Visualization Symp., pp. 3342, Oct. 2000.
[35] T. Lewiner, L. Velho, H. Lopes, and V. Mello, "Simplicial Isosurface Compression," Proc. Vision, Modeling, and Visualization Conf., pp. 299306, Nov. 2004.
[36] K. Weiss and L. De Floriani, "Diamond Hierarchies of Arbitrary Dimension," Computer Graphics Forum, vol. 28, no. 5, pp. 12891300, 2009.
[37] H. Hege, M. Seebaß, D. Stalling, and M. Zöckler, "A Generalized Marching Cubes Algorithm," KonradZuseZentrum für Informationstechnik Berlin, technical report, citeseer.ist.psu.edu575196.html, 1997.
[38] K. Bonnell, M. Duchaineau, D. Schikore, B. Hamann, and K. Joy, "Material Interface Reconstruction," IEEE Trans. Visualization and Computer Graphics, vol. 9, no. 4, pp. 500511, Oct.Dec. 2003.
[39] G.M. Nielson, "Dual Marching Tetrahedra: Contouring in the Tetrahedronal Environment," Advances in Visual Computing, Springer, pp. 183194, 2008.