
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Fabiano Petronetto, Afonso Paiva, Marcos Lage, Geovan Tavares, Hélio Lopes, Thomas Lewiner, "Meshless HelmholtzHodge Decomposition," IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 2, pp. 338349, March/April, 2010.  
BibTex  x  
@article{ 10.1109/TVCG.2009.61, author = {Fabiano Petronetto and Afonso Paiva and Marcos Lage and Geovan Tavares and Hélio Lopes and Thomas Lewiner}, title = {Meshless HelmholtzHodge Decomposition}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {16}, number = {2}, issn = {10772626}, year = {2010}, pages = {338349}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.61}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Meshless HelmholtzHodge Decomposition IS  2 SN  10772626 SP338 EP349 EPD  338349 A1  Fabiano Petronetto, A1  Afonso Paiva, A1  Marcos Lage, A1  Geovan Tavares, A1  Hélio Lopes, A1  Thomas Lewiner, PY  2010 KW  HelmholtzHodge decomposition KW  smoothed particles hydrodynamics KW  vector field KW  features visualization KW  multiphase fluids KW  incompressible flow. VL  16 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] Y. Tong, S. Lombeyda, A.N. Hirani, and M. Desbrun, “Discrete Multiscale Vector Field Decomposition,” ACM Trans. Graphics, vol. 22, no. 3, pp. 445452, 2003.
[2] A. Cuzol, P. Hellier, and E. Mémin, “A Low Dimensional Fluid Motion Estimator,” Int'l J. Computer Vision, vol. 75, no. 3, pp. 329349, 2007.
[3] J. Stam, “Stable Fluids,” Proc. ACM SIGGRAPH, pp. 121128, 1999.
[4] K. Polthier and E. Preuss, “Variational Approach to Vector Field Decomposition,” Proc. Eurographics Workshop Scientific Visualization, 2000.
[5] K. Polthier and E. Preuss, “Identifying Vector Fields Singularities Using a Discrete Hodge Decomposition,” Visualization and Mathematics III, pp. 113134, Springer, 2003.
[6] Q. Guo, M.K. Mandal, and M.Y. Li, “Efficient HodgeHelmholtz Decomposition of Motion Fields,” Pattern Recognition Letters, vol. 26, no. 4, pp. 493501, 2005.
[7] S.J. Cummins and M. Rudman, “An SPH Projection Method,” J.Computational Physics, vol. 152, no. 2, pp. 584607, 1999.
[8] F. Colin, R. Egli, and F.Y. Lin, “Computing a Null Divergence Velocity Field Using Smoothed Particle Hydrodynamics,” J.Computational Physics, vol. 217, no. 2, pp. 680692, 2006.
[9] A. Chorin and J. Marsden, A Mathematical Introduction to Fluid Mechanics. Springer, 1992.
[10] G.R. Liu and M.B. Liu, Smoothed Particle Hydrodynamics. World Science, 2005.
[11] M. Müller, D. Charypar, and M. Gross, “ParticleBased Fluid Simulation for Interactive Applications,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 154159, 2003.
[12] J.J. Monaghan, “Smoothed Particle Hydrodynamics,” Reports on Progress in Physics, vol. 68, pp. 17031759, 2005.
[13] F. Petronetto, “Equação de Poisson e a Decomposição de HelmholtzHodge usando SPH,” PhD dissertation, PUCRio, 2008.
[14] S. Li and W.K. Liu, Meshfree Particle Methods. Springer, 2004.
[15] D. Dunbar and G. Humphreys, “A Spatial Data Structure for Fast PoissonDisk Sample Generation,” Proc. ACM SIGGRAPH, pp.503508, 2006.
[16] M. Lage, F. Petronetto, A. Paiva, H. Lopes, T. Lewiner, and G. Tavares, “Vector Field Reconstruction from Sparse Samples with Applications,” Proc. Brazilian Symp. Computer Graphics and Image Processing (SIBGRAPI '06), pp. 297304, 2006.
[17] R. Pozo and K. Remington, SparseLib++ Sparse Matrix Class Library, http://math.nist.govsparselib++, 2009.
[18] J. Dongarra, A. Lumsdaine, R. Pozo, and K. Remington, IML++ Iterative Methods Library, http://math.nist.goviml++, 1996.
[19] Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM, 2003.
[20] A. Hoerl, and R. Kennard, “Ridge Regression: Biased Estimation for Nonorthogonal Problems,” Technometrics, vol. 12, no. 1, pp. 5567, 1970.
[21] J. Helman and L. Hesselink, “Representation and Display of Vector Field Topology in Fluid Flow Data Sets,” Computer, vol. 22, no. 8, pp. 2736, Aug. 1989.
[22] G. Chen, K. Mischaikow, R.S. Laramee, and E. Zhang, “Efficient Morse Decompositions of Vector Fields,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 4, pp. 848862, July/Aug. 2008.
[23] X. Tricoche, G. Scheuermann, and H. Hagen, “Continuous Topology Simplification of Planar Vector Fields,” Proc. 12th IEEE Conf. Visualization, pp. 159166, 2001,
[24] C. DiazGoano, P.D. Minev, and K. Nandakumar, “A Fictitious Domain/Finite Element Method for Particulate Flows,” J. Computational Physics, vol. 192, no. 1, pp. 105123, 2003.
[25] R. Bridson, J. Houriham, and M. Nordenstam, “Curlnoise for Procedural Fluid Flow,” ACM Trans. Graphics, vol. 26, no. 3, 2007.
[26] M. Becker and M. Teschner, “Weakly Compressible SPH for Free Surface Flows,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 209217, 2007.
[27] R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutré, and M. Gross, “A Unified Lagrangian Approach to SolidFluid Animation,” Proc. Eurographics/IEEE VGTC Symp. PointBased Graphics, pp. 125134, 2005.
[28] M. Müller, B. Solenthaler, R. Keiser, and M. Gross, “ParticleBased FluidFluid Interaction,” Proc. ACM SIGGRAPH '05 Symp. Computer Animation, pp. 237244, 2005.
[29] A. Paiva, F. Petronetto, T. Lewiner, and G. Tavares, “ParticleBased NonNewtonian Fluid Animation for Melting Objects,” Proc. Brazilian Symp. Computer Graphics and Image Processing (SIBGRAPI '06), pp. 7885, 2006.