
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Tomohiro Tachi, "Origamizing Polyhedral Surfaces," IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 2, pp. 298311, March/April, 2010.  
BibTex  x  
@article{ 10.1109/TVCG.2009.67, author = {Tomohiro Tachi}, title = {Origamizing Polyhedral Surfaces}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {16}, number = {2}, issn = {10772626}, year = {2010}, pages = {298311}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.67}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Origamizing Polyhedral Surfaces IS  2 SN  10772626 SP298 EP311 EPD  298311 A1  Tomohiro Tachi, PY  2010 KW  Origami KW  origami design KW  developable surface KW  folding KW  computeraided design. VL  16 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] E.D. Demaine and J. O'Rourke, Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge Univ. Press, July 2007.
[2] J. Mitani and H. Suzuki, “Making Papercraft Toys from Meshes Using StripBased Approximate Unfolding,” ACM Trans. Graphics, vol. 23, no. 3, pp. 259263, 2004.
[3] F. Massarwi, C. Gotsman, and G. Elber, “Papercraft Models Using Generalized Cylinders,” Proc. 15th Pacific Conf. Computer Graphics and Applications (PG '07), pp. 148157, 2007.
[4] D. Julius, V. Kraevoy, and A. Sheffer, “DCharts: QuasiDevelopable Mesh Segmentation,” Proc. Ann. Conf. European Assoc. for Computer Graphics (Eurographics), pp. 581590, 2005.
[5] C.C.L. Wang, “Towards Flattenable Mesh Surfaces,” ComputerAided Design, vol. 40, no. 1, pp. 109122, 2008.
[6] J. Subag and G. Elber, “Piecewise Developable Surface Approximation of General NURBS Surfaces with Global Error Bounds,” Proc. Int'l Conf. Geometric Modeling and Processing, pp. 143156, 2006.
[7] Y. Liu, H. Pottmann, J. Wallner, Y.L. Yang, and W. Wang, “Geometric Modeling with Conical Meshes and Developable Surfaces,” ACM Trans. Graphics, vol. 25, no. 3, pp. 681689, 2006.
[8] H. Pottmann, A. Schiftner, P. Bo, H. Schmiedhofer, W. Wang, N. Baldassini, and J. Wallner, “Freeform Surfaces from Single Curved Panels,” ACM Trans. Graphics, vol. 27, no. 3, 2008.
[9] M. Wertheim, “Cones, Curves, Shells, Towers: He Made Paper Jump to Life,” The New York Times, http://www.theiff.org/pressNYThuffman.html , June 2004.
[10] R.D. Resch and H. Christiansen, “The Design and Analysis of Kinematic Folded Plate Systems,” Proc. Symp. for Folded Plate Structures, 1970.
[11] R.D. Resch, “Ron Resch Dot Com,” http:/www.ronresch.com/, 2009.
[12] J. Lobell, “The Milgo Experiment: An Interview with Haresh Lalvani,” Architectural Design, vol. 76, no. 4, pp. 5261, 2006.
[13] RoboFold “Robofold,” http://www.robofold.comdesign.html, 2009.
[14] D. Huffman, “Curvature and Creases: A Primer on Paper,” IEEE Trans. Computers, vol. 25, no. 10, pp. 10101019, Oct. 1976.
[15] Y. Kergosien, H. Gotoda, and T. Kunii, “Bending and Creasing Virtual Paper,” IEEE Computer Graphics and Applications, vol. 14, no. 1, pp. 4048, Jan. 1994.
[16] M. Kilian, S. Flöry, N.J. Mitra, and H. Pottmann, “Curved Folding,” ACM Trans. Graphics, vol. 27, no. 3, pp. 19, 2008.
[17] S.M. Belcastro and T. Hull, “A Mathematical Model for NonFlat Origami,” Proc. Third Int'l Meeting of Origami Math., Science, and Education (Origami3), pp. 3951, 2002.
[18] T. Tachi, “Rigid Origami Simulator,” http://www.tsg.ne.jp/TTsoftware/, 2007.
[19] R. Burgoon, Z.J. Wood, and E. Grinspun, “Discrete Shells Origami,” Proc. Computers and Their Applications, pp. 180187, 2006.
[20] M. Bern and B. Hayes, “The Complexity of Flat Origami,” Proc. Seventh Ann. ACMSIAM Symp. Discrete Algorithms, pp. 175183, 1996.
[21] T. Meguro, “The Method to Design Origami,” Origami Tanteidan Newspaper, 1991.
[22] E.D. Demaine, M.L. Demaine, and A. Lubiw, “Folding and Cutting Paper,” Proc. Revised Papers from the Japan Conf. Discrete and Computational Geometry (JCDCG '98), pp. 104117, 1998.
[23] R.J. Lang, “A Computational Algorithm for Origami Design,” Proc. 12th Ann. Symp. Computational Geometry (SCG '96), pp. 98105, 1996.
[24] M. Bern, E. Demaine, D. Eppstein, and B. Hayes, “A DiskPacking Algorithm for an Origami Magic Trick,” Proc. Third Int'l Meeting of Origami Math., Science, and Education (Origami3), pp. 1728, 2002.
[25] M. Bern and B. Hayes, “Origami Embedding of PiecewiseLinear TwoManifolds,” Proc. Int'l Latin Am. Symp. Theoretical Informatics (LATIN), pp. 617629, 2008.
[26] R.J. Lang, Tree Maker 4.0: A Program for Origami Design, http://www.langorigami.com/science/treemaker TreeMkr40.pdf, 1998.
[27] E.D. Demaine, M.L. Demaine, and J.S.B. Mitchell, “Folding Flat Silhouettes and Wrapping Polyhedral Packages: New Results in Computational Origami,” Computational Geometry: Theory and Applications, vol. 16, no. 1, pp. 321, 2000.
[28] M. Tanaka, “Possibility and Constructive Proof through Origami,” Hyogo Univ. J., pp. 7582, 2006.
[29] T. Tachi, “3D Origami Design Based on Tucking Molecule,” Proc. Fourth Int'l Conf. Origami in Science, Math., and Education (Origami4), pp. 259272, 2009.
[30] Tama Software “Pepakura Designer,” http://www.tamasoft. co.jppepakuraen/, 2004.
[31] T.K. Dey, “A New Technique to Compute Polygonal Schema for 2Manifolds with Application To NullHomotopy Detection,” Proc. ACM Ann. Symp. Computational Geometry (SoCG '94), pp. 277284, 1994.
[32] F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust, “Computing a Canonical Polygonal Schema of an Orientable Triangulated Surface,” Proc. ACM Ann. Symp. Computational Geometry (SoCG '01), pp. 8089, 2001.
[33] X. Gu, S.J. Gortler, and H. Hoppe, “Geoemtry Images,” ACM Trans. Graphics, vol. 21, no. 3, pp. 355361, 2002.
[34] W. Tutte, “How to Draw a Graph,” Proc. London Math. Soc., pp.743768, 1963.
[35] A. Bateman, “Computer Tools and Algorithms for Origami Tessellation Design,” Proc. Third Int'l Meeting of Origami Math., Science, and Education (Origami3), pp. 121127, 2002.
[36] E. Gjerde, Origami Tessellations: Awe Inspiring Geometric Designs. AK Peters, 2008.
[37] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Mesh Optimization,” Proc. ACM SIGGRAPH '93, pp. 1926, 1993.
[38] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, “Multiresolution Analysis of Arbitrary Meshes,” Proc. ACM SIGGRAPH '95, pp. 173182, 1995.
[39] A.W.F. Lee, D. Dobkin, W. Sweldens, and P. Schroder, “Multiresolution Mesh Morphing,” Proc. ACM SIGGRAPH '99, pp. 343350, 1999.
[40] P. Alliez, M. Meyer, and M. Desbrun, “Interactive Geometry Remeshing,” ACM Trans. Graphics, vol. 21, no. 3, pp. 347354, 2002.
[41] G. Peyré and L. Cohen, “Geodesic Remeshing Using Front Propagation,” Proc. Variational and Level Set Methods in Computer Vision '03, pp. 3340, 2003.
[42] S. Dong, P.T. Bremer, M. Garland, V. Pascucci, and J.C. Hart, “Spectral Surface Quadrangulation,” ACM Trans. Graphics, vol. 25, no. 3, pp. 10571066, 2006.
[43] D. CohenSteiner, P. Alliez, and M. Desbrun, “Variational Shape Approximation,” ACM Trans. Graphics, vol. 23, no. 3, pp. 905914, 2004.