
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
P.T. Bremer, G.H. Weber, V. Pascucci, M. Day, J.B. Bell, "Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames," IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 2, pp. 11, March/April, 2010.  
BibTex  x  
@article{ 10.1109/TVCG.2009.69, author = {P.T. Bremer and G.H. Weber and V. Pascucci and M. Day and J.B. Bell}, title = {Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {16}, number = {2}, issn = {10772626}, year = {2010}, pages = {11}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.69}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames IS  2 SN  10772626 SP1 EP1 EPD  11 A1  P.T. Bremer, A1  G.H. Weber, A1  V. Pascucci, A1  M. Day, A1  J.B. Bell, PY  2010 KW  Hydrogen KW  Fires KW  Isosurfaces KW  Combustion KW  Robustness KW  User interfaces KW  Computer graphics KW  Information analysis KW  Numerical simulation KW  Statistical distributions KW  burning regions. KW  Visualization KW  data analysis KW  topological data analysis KW  Morse complex KW  Reeb graph KW  feature detection KW  feature tracking KW  combustion simulations VL  16 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] P.K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang, “Extreme Elevation on a 2Manifold,” Discrete & Computational Geometry, vol. 36, no. 4, pp. 553572, 2006.
[2] J.B. Bell, R.K. Cheng, M.S. Day, and I.G. Shepherd, “Numerical Simulation of Lewis Number Effects on Lean Premixed Turbulent Flames,” Proc. Combustion Inst., vol. 31, pp. 13091317, 2007.
[3] P. Bhaniramka, R. Wenger, and R. Crawfis, “Isosurface Construction in Any Dimension Using Convex Hulls,” IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 2, pp. 130141, Mar. 2004.
[4] P.T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, “A Topological Hierarchy for Functions on Triangulated Surfaces,” IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 4, pp.385396, July/Aug. 2004.
[5] P.T. Bremer and V. Pascucci, “A Practical Approach to TwoDimensional Scalar Topology,” Proc. Workshop TopologyBased Methods in Visualization (TopoInVis '07), pp. 151171, 2007.
[6] A. Cayley, “On Contour and Slope Lines,” The London, Edinburgh and Dublin Philosophical Magazine and J. Science, vol. 18, pp. 264268, 1859.
[7] M. Day, J. Bell, P.T. Bremer, V. Pascucci, V. Beckner, and M. Lijewski, “Turbulence Effects on Cellular Burning Structures in Lean Premixed Hydrogen Flames,” Combustion and Flame, vol. 156, pp. 10351045, 2009.
[8] M.S. Day and J.B. Bell, “Numerical Simulation of Laminar Reacting Flows with Complex Chemistry,” Combustion Theory Modelling, vol. 4, no. 4, pp. 535556, 2000.
[9] H. Edelsbrunner, M. Facello, and J. Liang, “On the Definition and the Construction of Pockets in Macromolecules,” Discrete Applied Math., vol. 88, nos. 13, pp. 83102, 1998.
[10] H. Edelsbrunner and J. Harer, “Jacobi Sets of Multiple Morse Functions,” Foundations of Computational Math., Minneapolis 2002, pp. 3757, Cambridge Univ. Press, 2002.
[11] H. Edelsbrunner, J. Harer, A. Mascarenhas, and V. Pascucci, “TimeVarying Reeb Graphs for Continuous SpaceTime Data,” Proc. 20th Symp. Computational Geometry, pp. 366372, 2004.
[12] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, “MorseSmale Complexes for Piecewise Linear 3Manifolds,” Proc. 19th Symp. Computational Geometry, pp. 361370, 2003.
[13] H. Edelsbrunner, J. Harer, and A. Zomorodian, “Hierarchical MorseSmale Complexes for Piecewise Linear 2Manifolds,” Discrete & Computational Geometry, vol. 30, pp. 87107, 2003.
[14] I. Fujishiro, R. Otsuka, S. Takahashi, and Y. Takeshima, “TMap: A Topological Approach to Visual Exploration of TimeVarying Volume Data,” Proc. Sixth Int'l Symp. High Performance Computing, pp. 176190, 2008.
[15] A. Gyulassy, M. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa, A. Higginbotham, and B. Hamann, “Topologically Clean Distance Fields,” IEEE Trans. Computer Graphics and Visualization, vol. 13, no. 6, pp. 14321439, Nov. 2007.
[16] A. Gyulassy, V. Natarajan, V. Pascucci, P.T. Bremer, and B. Hamann, “TopologyBased Simplification for Feature Extraction from 3D Scalar Fields,” IEEE Trans. Computer Graphics and Visualization, vol. 12, no. 4, pp. 474484, 2006.
[17] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann, “Efficient Computation of MorseSmale Complexes for ThreeDimensional Scalar Functions,” IEEE Trans. Computer Graphics and Visualization, vol. 13, no. 6, pp. 14401447, Nov./Dec. 2007.
[18] G. Ji and H.W. Shen, “Efficient Isosurface Tracking Using Precomputed Correspondence Table,” Proc. Symp. Visualization (VisSym '04), pp. 283292, 2004.
[19] G. Ji, H.W. Shen, and R. Wegner, “Volume Tracking Using Higher Dimensional Isocontouring,” Proc. IEEE Visualization Conf., pp 209216, 2003.
[20] E. Koutsofios and S. North, “Drawing Graphs with Dot,” Technical Report 9109045911308TM, AT&T Bell Laboratories, 1991.
[21] D. Laney, P.T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci, “Understanding the Structure of the Turbulent Mixing Layer in Hydrodynamic Instabilities,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp. 10521060, Sept./Oct. 2006.
[22] J.C. Maxwell, “On Hills and Dales,” The London, Edinburgh and Dublin Philosophical Magazine and J. Science, vol. XL, pp. 421427, 1870.
[23] J. Milnor, Morse Theory. Princeton Univ. Press, 1963.
[24] M. Morse, “Relations between the Critical Points of a Real Functions of N Independent Variables,” Trans. Am. Math. Soc., vol. 27, pp. 345396, July 1925.
[25] L.R. Nackman, “TwoDimensional Critical Point Configuration Graphs,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 6, no. 4, pp. 442450, July 1984.
[26] V. Pascucci, G. Scorzelli, P.T. Bremer, and A. Mascarenhas, “Robust OnLine Computation of Reeb Graphs: Simplicity and Speed,” Proc. ACM SIGGRAPH, pp. 58.158.9, 2007.
[27] J. Pfaltz, “Surface Networks,” Geographical Analysis, vol. 8, pp. 7793, 1976.
[28] G. Reeb, “Sur Les Points Singuliers D'une Forme De Pfaff Completement Intergrable Ou D'une Fonction Numerique [on the Singular Points of a Complete Integral Pfaff Form or of a Numerical Function],” Comptes Rendus Acad. Science Paris, vol. 222, pp. 847849, 1946.
[29] F. Reinders, F.H. Post, and H.J.W. Spoelder, “Visualization of TimeDependent Data with Feature Tracking and Event Detection,” The Visual Computer, vol. 17, no. 1, pp. 5571, 2001.
[30] R. Samtaney, D. Silver, N. Zabusky, and J. Cao, “Visualizing Features and Tracking Their Evolution,” Computer, vol. 27, no. 7, pp. 2027, July 1994.
[31] Y. Shinagawa, T.L. Kunii, H. Sato, and M. Ibusuki, “Modeling Contact of Two Complex Objects: With an Application to Characterizing Dental Articulations,” Computers and Graphics, vol. 19, no. 1, pp. 2128, 1995.
[32] D. Silver and X. Wang, “Tracking and Visualizing Turbulent 3d Features,” IEEE Trans. Visualization and Computer Graphics, vol. 3, no. 2, pp. 129141, Apr.June 1997.
[33] D. Silver and X. Wang, “Tracking Scalar Features in Unstructured Datasets,” Proc. IEEE Visualization Conf., pp 7986, 1998.
[34] B.S. Sohn and C. Bajaj, “TimeVarying Contour Topology,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 1, pp. 1425, Jan. 2006.
[35] A. Szymczak, “SubdomainAware Contour Trees and Contour Tree Evolution in TimeDependent Scalar Fields,” Proc. Shape Modeling Int'l (SMI) Conf., pp. 136144, 2005.
[36] G. Weber, P.T. Bremer, J. Bell, M. Day, and V. Pascucci, “Feature Tracking Using Reeb Graphs,” Proc. Conf. TopologyBased Methods in Visualization (TopoInVis '09), 2009.
[37] X. Zhang and C. Bajaj, “Extraction, Visualization and Quantification of Protein Pockets,” Proc. Sixth Ann. Int'l Conf. Computational System Bioinformatics (CSB '07), pp. 275286, 2007.