The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January/February (2010 vol.16)
pp: 147-160
Florian Hecht , Georgia Institute of Technology, Atlanta
Peter J. Mucha , University of North Carolina at Chapel Hill, Chapel Hill
Greg Turk , Georgia Institute of Technology, Atlanta
ABSTRACT
We present a visualization technique for simulated fluid dynamics data that visualizes the gradient of the velocity field in an intuitive way. Our work is inspired by rheoscopic particles, which are small, flat particles that, when suspended in fluid, align themselves with the shear of the flow. We adopt the physical principles of real rheoscopic particles and apply them, in model form, to 3D velocity fields. By simulating the behavior and reflectance of these particles, we are able to render 3D simulations in a way that gives insight into the dynamics of the system. The results can be rendered in real time, allowing the user to inspect the simulation from all perspectives. We achieve this by a combination of precomputations and fast ray tracing on the GPU. We demonstrate our method on several different simulations, showing their complex dynamics in the process.
INDEX TERMS
Rheoscopic fluid, flow visualization, tensor field visualization, ellipsoidal particle dynamics.
CITATION
Florian Hecht, Peter J. Mucha, Greg Turk, "Virtual Rheoscopic Fluids", IEEE Transactions on Visualization & Computer Graphics, vol.16, no. 1, pp. 147-160, January/February 2010, doi:10.1109/TVCG.2009.46
REFERENCES
[1] N. Abaid, D. Adalsteinsson, A. Agyapong, and R.M. McLaughlin, “An Internal Splash: Levitation of Falling Spheres in Stratified Fluids,” Physics of Fluids, vol. 16, no. 5, pp. 1567-1580, May 2004.
[2] W.L. Barth and C.A. Burns, “Virtual Rheoscopic Fluids for Flow Visualization,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp. 1751-1758, Nov./Dec. 2007.
[3] F.P. Bretherton, “The Motion of Rigid Particles in a Shear Flow at Low Reynolds Number,” J. Fluid Mechanics, vol. 14, pp. 284-304, 1962.
[4] B. Cabral and L. Leedom, “Imaging Vector Fields Using Line Integral Convolution,” Proc. ACM SIGGRAPH '93, pp. 263-270, Aug. 1993.
[5] M. Carlson, P.J. Mucha, and G. Turk, “Rigid Fluid: Animating the Interplay between Rigid Bodies and Fluid,” Proc. ACM SIGGRAPH '04, pp. 377-384, Aug. 2004.
[6] R. Crawfis and N. Max, “Direct Volume Visualization of Three Dimensional Vector Fields,” Proc. Workshop Volume Visualization, pp. 55-60, 1992.
[7] T. Delmarcelle and L. Hesselink, “Visualization of Second Order Tensor Fields and Matrix Data,” Proc. IEEE Conf. Visualization, pp.316-323, Oct. 1992.
[8] T. Delmarcelle and L. Hesselink, “The Topology of Symmetric, Second-Order Tensor Fields,” Proc. IEEE Conf. Visualization, pp.140-147, Oct. 1994.
[9] D. Dovey, “Vector Plots for Irregular Grids,” Proc. IEEE Conf. Visualization, pp. 248-253, Oct./Nov. 1995.
[10] G. Gauthier, P. Gondret, and M. Rabaud, “Motions of Anisotropic Particles: Application to Visualization of Three-Dimensional Flows,” Physics of Fluids, vol. 10, pp. 2147-2154, Sept. 1998.
[11] I. Grant, “Particle Image Velocimetry: A Review,” Proc. Inst. of Mechanical Engineers, Part C, vol. 211, no. 1, pp. 55-76, 1997.
[12] I. Hotz, L. Feng, H. Hagen, B. Hamann, K. Joy, and B. Jeremic, “Physically Based Methods for Tensor Field Visualization,” Proc. IEEE Conf. Visualization, pp. 123-130, Oct. 2004.
[13] T.J. Jankun-Kelly and K. Mehta, “Superellipsoid-Based Real Symmetric Traceless Tensor Glyphs Motivated by Nematic Liquid Crystal Alignment Visualization,” Proc. IEEE Conf. Visualization, pp. 1197-1204, Oct./Nov. 2006.
[14] G.B. Jeffery, “The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid,” Proc. Royal Soc. of London, Series A, vol. 102, pp.161-179, 1922.
[15] B. Jobard and W. Lefer, “Creating Evenly-Spaced Streamlines of Arbitrary Density,” Proc. Eurographics Workshop Visualization in Scientific Computing, pp. 43-55, Oct. 1998.
[16] J.T. Kajiya and T.L. Kay, “Rendering Fur with Three Dimensional Textures,” Proc. ACM SIGGRAPH '89, pp. 271-280, July/Aug. 1989.
[17] G. Kindlmann and D. Weinstein, “Hue-Balls and Lit-Tensors for Direct Volume Rendering of Diffusion Tensor Fields,” Proc. IEEE Conf. Visualization, pp. 183-189, Oct. 1999.
[18] G. Kindlmann, D. Weinstein, and D. Hart, “Strategies for Direct Volume Rendering of Diffusion Tensor Fields,” IEEE Trans. Visualization and Computer Graphics, vol. 6, no. 2, pp. 124-138, Apr.-June 2000.
[19] G. Kindlmann, D. Weinstein, and D. Hart, “Strategies for Direct Volume Rendering of Diffusion Tensor Fields,” Proc. IEEE Conf. Visualization, pp. 1329-1335, Oct./Nov. 2006.
[20] D.H. Laidlaw, E.T. Ahrens, D. Kremers, M.J. Avalos, R.E. Jacobs, and C. Readhead, “Visualizing Diffusion Tensor Images of the Mouse Spinal Cord,” Proc. IEEE Conf. Visualization, pp. 127-134, Oct. 1998.
[21] R.S. Laramee, B. Jobard, and H. Hauser, “Image Space Based Visualization of Unsteady Flow on Surfaces,” Proc. IEEE Conf. Visualization, pp. 131-138, Oct. 2003.
[22] R.S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F.H. Post, and D. Weiskopf, “The State of the Art in Flow Visualization: Dense and Texture-Based Techniques,” Computer Graphics Forum, vol. 23, no. 2, pp. 203-221, 2004.
[23] Z. Liu, R.J. Moorhead, and J. Groner, “An Advanced Evenly-Spaced Streamline Placement Algorithm,” Proc. IEEE Conf. Visualization, pp. 965-972, Oct./Nov. 2006.
[24] P. Matisse and M. Gorman, “Neutrally Buoyant Anisotropic Particles for Flow Visualization,” Physics of Fluids, vol. 27, no. 4, pp. 759-760, Apr. 1984.
[25] O. Mattausch, T. Theußl, H. Hauser, and E. Gröller, “Strategies for Interactive Exploration of 3D Flow Using Evenly-Spaced Illuminated Streamlines,” Proc. Spring Conf. Computer Graphics, pp.213-222, Apr. 2003.
[26] A. Mebarki, P. Alliez, and O. Devillers, “Farthest Point Seeding for Efficient Placement of Streamlines,” Proc. IEEE Conf. Visualization, pp. 479-486, Oct. 2005.
[27] P.J. Mucha, S.-Y. Tee, D.A. Weitz, B.I. Shraiman, and M.P. Brenner, “A Model for Velocity Fluctuations in Sedimentation,” J. Fluid Mechanics, vol. 501, pp. 71-104, 2004.
[28] N.A. Patankar, P. Singh, D.D. Joseph, R. Glowinski, and T.-W. Pan, “A New Formulation of the Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows,” Int'l J. Multiphase Flow, vol. 26, no. 9, pp. 1509-1524, 2000.
[29] T. Preußer and M. Rumpf, “Anisotropic Nonlinear Diffusion in Flow Visualization,” Proc. IEEE Conf. Visualization, pp. 325-332, Oct. 1999.
[30] A.R. Sanderson, C.R. Johnson, and R.M. Kirby, “Display of Vector Fields Using a Reaction-Diffusion Model, Visualization Techniques,” Proc. IEEE Conf. Visualization, pp. 115-122, Oct. 2004.
[31] S. Ömer, “On Flow Visualization Using Reflective Flakes,” J. Fluid Mechanics, vol. 152, pp. 235-248, 1985.
[32] S.T. Thoroddsen and J.M. Bauer, “Qualitative Flow Visualization Using Colored Lights and Reflective Flakes,” Physics of Fluids, vol. 11, pp. 1702-1705, 1999.
[33] X. Tricoche, G. Scheuermann, and H. Hagen, “Tensor Topology Tracking: A Visualization Method for Time-Dependent 2D Symmetric Tensor Fields,” Computer Graphics Forum, vol. 20, no. 3, pp. 461-470, 2001.
[34] G. Turk and D. Banks, “Image-Guided Streamline Placement,” Proc. ACM SIGGRAPH '96, pp. 453-460, Aug. 1996.
[35] J.J. van Wijk, “Spot Noise: Texture Synthesis for Data Visualization,” Proc. ACM SIGGRAPH '91, pp. 309-318, July 1991.
[36] J.J. van Wijk, “Image Based Flow Visualization,” Proc. ACM SIGGRAPH '02, pp. 745-754, July 2002.
[37] J.J. van Wijk, “Image Based Flow Visualization for Curved Surface,” Proc. IEEE Conf. Visualization '03, pp. 123-130, Oct. 2003.
[38] V. Verma, D.L. Kao, and Alex Pang, “A Flow-Guided Streamline Seeding Strategy,” Proc. IEEE Conf. Visualization, pp. 415-422, Oct. 2000.
[39] D. Weinstein, G. Kindlmann, and E. Lundberg, “Tensorlines: Advection-Diffusion Based Propagation through Diffusion Tensor Fields,” Proc. IEEE Conf. Visualization, pp. 249-253, Oct. 1999.
[40] X. Ye, D.L. Kao, and A. Pang, “Strategy for Seeding 3D Streamlines,” Proc. IEEE Conf. Visualization, pp. 471-478, Oct. 2005.
[41] X. Zheng and A. Pang, “HyperLIC,” Proc. IEEE Conf. Visualization 2003, pp. 249-256, Oct. 2003.
[42] X. Zheng, B. Parlett, and A. Pang, “Topological Structures of 3D Tensor Fields,” Proc. IEEE Conf. Visualization, pp. 551-558, Oct. 2005.
[43] L. Zhukov and A. Barr, “Oriented Tensor Reconstruction: Tracing Neural Pathways from Diffusion Tensor MRI,” Proc. IEEE Conf. Visualization, pp. 387-394, Oct./Nov. 2002.
36 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool