
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Thomas Schultz, Holger Theisel, HansPeter Seidel, "Crease Surfaces: From Theory to Extraction and Application to Diffusion Tensor MRI," IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 1, pp. 109119, January/February, 2010.  
BibTex  x  
@article{ 10.1109/TVCG.2009.44, author = {Thomas Schultz and Holger Theisel and HansPeter Seidel}, title = {Crease Surfaces: From Theory to Extraction and Application to Diffusion Tensor MRI}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {16}, number = {1}, issn = {10772626}, year = {2010}, pages = {109119}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.44}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Crease Surfaces: From Theory to Extraction and Application to Diffusion Tensor MRI IS  1 SN  10772626 SP109 EP119 EPD  109119 A1  Thomas Schultz, A1  Holger Theisel, A1  HansPeter Seidel, PY  2010 KW  Height crease KW  ridge surface KW  valley surface KW  tensor topology KW  DTMRI stream surface. VL  16 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] L. Armijo, “Minimization of Functions Having Lipschitz Continuous First Partial Derivatives,” Pacific J. Math., vol. 16, no. 1, pp. 13, 1966.
[2] P.J. Basser, J. Mattiello, and D.L. Bihan, “Estimation of the Effective SelfDiffusion Tensor from the NMR Spin Echo.” J.Magnetic Resonance, vol. B, no. 103, pp. 247254, 1994.
[3] A.G. Belyaev, E.V. Anoshkina, and T.L. Kunii, “Ridges, Ravines and Singularities,” Topological Modeling for Visualization, A.T.Fomenko and T.L. Kunii, eds., chapter 18, Springer, 1997.
[4] H. Blum and R.N. Nagel, “Shape Description Using Weighted Symmetric Axis Features,” Pattern Recognition, vol. 10, pp. 167180, 1978.
[5] J.Y. Chang, K.M. Lee, and S.U. Lee, “Multiview Normal Field Integration Using Level Set Methods,” Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 18, 2007.
[6] J. Damon, “Generic Structure of TwoDimensional Images under Gaussian Blurring,” SIAM J. Applied Math., vol. 59, no. 1, pp. 97138, 1998.
[7] T. Delmarcelle and L. Hesselink, “The Topology of Symmetric, SecondOrder Tensor Fields,” Proc. IEEE Conf. Visualization, R.D.Bergeron and A.E. Kaufman, eds., pp. 140147, 1994.
[8] D. Eberly, Ridges in Image and Data Analysis, Computational Imaging and Vision, vol. 7. Kluwer Academic Publishers. 1996.
[9] D. Eberly, R. Gardner, B. Morse, S. Pizer, and C. Scharlach, “Ridges for Image Analysis,” J. Math. Imaging and Vision, vol. 4, pp. 353373, 1994.
[10] R.T. Frankot and R. Chellappa, “A Method for Enforcing Integrability in Shape from Shading Algorithms,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 10, no. 4, pp. 439451, July 1988.
[11] J.D. Furst and S.M. Pizer, “Marching Ridges,” Proc. Int'l Assoc. Science and Technology for Development (IASTED) Int'l Conf. Signal and Image Processing, pp. 2226, 2001.
[12] J.D. Furst, S.M. Pizer, and D.H. Eberly, “Marching Cores: A Method for Extracting Cores from 3D Medical Images,” Proc. Workshop Math. Methods in Biomedical Image Analysis, pp. 124130, 1996.
[13] R.M. Haralick, “Ridges and Valleys on Digital Images,” Computer Vision, Graphics, and Image Processing, vol. 22, pp. 2838, 1983.
[14] B. Jeremić, G. Scheuermann, J. Frey, Z. Yang, B. Hamann, K.I. Joy, and H. Hagen, “Tensor Visualizations in Computational Geomechanics,” Int'l J. Numerical and Analytical Methods in Geomechanics, vol. 26, pp. 925944, 2002.
[15] G. Kindlmann, “Superquadric Tensor Glyphs,” Proc. Eurographics/IEEE Symp. Visualization (SymVis), pp. 147154, 2004.
[16] G. Kindlmann, X. Tricoche, and C.F. Westin, “Anisotropy Creases Delineate White Matter Structure in Diffusion Tensor MRI,” R.Larsen, M. Nielsen, and J. Sporring, eds., Proc. Ninth Int'l Conf. Medical Image Computing and ComputerAssisted Intervention (MICCAI), pp. 126133, 2006.
[17] G. Kindlmann, X. Tricoche, and C.F. Westin, “Delineating White Matter Structure in Diffusion Tensor MRI with Anisotropy Creases,” Medical Image Analysis, vol. 11, no. 5, pp. 492502, 2007.
[18] G. Kindlmann and C.F. Westin, “Diffusion Tensor Visualization with Glyph Packing,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp. 13291335, Sept./Oct. 2006.
[19] J.J. Koenderink and A.J. van Doorn, “Local Features of Smooth Shapes: Ridges and Courses,” Geometric Methods in Computer Vision II, B.C. Vemuri, ed., pp. 213, 1993.
[20] T. Lindeberg, “Edge Detection and Ridge Detection with Automatic Scale Selection,” Int'l J. Computer Vision, vol. 30, no. 2, pp.117154, 1998.
[21] W.E. Lorensen and H.E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Proc. ACM SIGGRAPH '87, pp. 163169, 1987.
[22] J.R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, rev. ed. Wiley, 1998.
[23] H. Miura and S. Kida, “Identification of Tubular Vortices in Turbulence,” J. Physical Soc. Japan, vol. 66, no. 5, pp. 13311334, 1997.
[24] S. Mori, B.J. Crain, V.P. Chacko, and P.C.M. van Zijl, “ThreeDimensional Tracking of Axonal Projections in the Brain by Magnetic Resonance Imaging,” Ann. Neurology, vol. 45, no. 2, pp.265269, 1999.
[25] B.S. Morse, Computation of Object Cores from GreyLevel Images, PhD thesis, Univ. of North Carolina at Chapel Hill, 1994.
[26] R. Peikert and M. Roth, “The ‘Parallel Vectors’ Operator—A Vector Field Visualization Primitive,” Proc. IEEE Visualization Conf. '99, D.S. Ebert, M. Gross, and B. Hamann, eds., pp. 263270, 1999.
[27] R. Peikert and F. Sadlo, “Height Ridge Computation and Filtering for Visualization,” Proc. IEEE Pacific Visualization 2008, I. Fujishiro, H. Li, and K.L. Ma, eds., pp. 119126, 2008.
[28] B.T. Phong, “Illumination for Computer Generated Pictures,” Comm. ACM, vol. 18, no. 6, pp. 311317, 1975.
[29] S.M. Pizer, C.A. Burbeck, J.M. Coggins, D.S. Fritsch, and B.S. Morse, “Object Shape Before Boundary Shape: ScaleSpace Medial Axes,” J. Math. Imaging and Vision vol. 4, pp. 303313, 1994.
[30] B. Preim and D. Bartz, Visualization in Medicine. Theory, Algorithms, and Applications. Morgan Kaufmann, 2007.
[31] R.J. Rost, OpenGL Shading Manual, second ed. AddisonWesley, 2006.
[32] F. Sadlo and R. Peikert, “Efficient Visualization of Lagrangian Coherent Structures by Filtered AMR Ridge Extraction,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp. 14561463, Nov. 2007.
[33] J. Sahner, T. Weinkauf, and H.C. Hege, “Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines,” Proc. Eurographics/IEEE Visualization and Graphics Technical Committee (VGTC) Symp. Visualization (EuroVis), K. Brodlie, D. Duke, and K.Joy, eds., pp. 151160, 2005.
[34] J. Sahner, T. Weinkauf, N. Teuber, and H.C. Hege, “Vortex and Strain Skeletons in Eulerian and Lagrangian Frames,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 5, pp. 980990, Sept./Oct. 2007.
[35] T. Schultz and H.P. Seidel, “Using Eigenvalue Derivatives for Edge Detection in DTMRI Data,” Pattern Recognition, G. Rigoll, ed., pp. 193202, 2008.
[36] R. Sondershaus and S. Gumhold, “Meshing of Diffusion Surfaces for PointBased Tensor Field Visualization,” Proc. 12th Int'l Meshing Roundtable (IMR), pp. 177188, 2003.
[37] J. Süßmuth and G. Greiner, “Ridge Based Curve and Surface Reconstruction,” Proc. Eurographics Symp. Geometry Processing, A. Belyaev and M. Garland, eds., pp. 243251, 2007.
[38] G. Taubin, “Estimating the Tensor of Curvature of a Surface from a Polyhedral Approximation,” Proc. Fifth Int'l Conf. Computer Vision (ICCV), pp. 902907, 1995.
[39] H. Theisel and H.P. Seidel, “Feature Flow Fields,” Proc. Eurographics/IEEETCVG Symp. Visualization (VisSym), G.P. Bonneau, S. Hahmann, and C.D. Hansen, eds., pp. 141148, 2003.
[40] X. Tricoche, G. Kindlmann, and C.F. Westin, “Invariant Crease Lines for Topological and Structural Analysis of Tensor Fields,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 6, pp.16271634, Nov./Dec. 2008.
[41] A. Vilanova, G. Berenschot, and C. van Pul, “DTI Visualization with Stream Surfaces and EvenlySpaced Volume Seeding,” Proc. Joint EurographicsIEEE Technical Committee on Visualization and Graphics (TCVG) Symp. Visualization (VisSym), O. Deussen, C.Hansen, D.A. Keim, and D. Saupe, eds., pp. 173182, 2004.
[42] A. Vilanova, S. Zhang, G. Kindlmann, and D.H. Laidlaw, “An Introduction to Visualization of Diffusion Tensor Imaging and Its Applications,” Visualization and Processing of Tensor Fields, J.Weickert and H. Hagen, eds., pp. 121153, Springer, 2006.
[43] C.F. Westin, S. Peled, H. Gudbjartsson, R. Kikinis, and F.A. Jolesz, “Geometrical Diffusion Measures for MRI from Tensor Basis Analysis,” Proc. Int'l Soc. Magnetic Resonance in Medicine, p. 1742, 1997.
[44] S. Zhang, C. Demiralp, and D.H. Laidlaw, “Visualizing Diffusion Tensor MR Images Using Streamtubes and Streamsurfaces,” IEEE Trans. Visualization and Computer Graphics, vol. 9, no. 4, pp. 454462, Oct.Dec. 2003.
[45] S. Zhang, D.H. Laidlaw, and G. Kindlmann, “Diffusion Tensor MRI Visualization,” The Visualization Handbook, C.D. Hansen and C.R. Johnson, eds., pp. 327340, Elsevier, 2005.
[46] X. Zheng and A. Pang, “Topological Lines in 3D Tensor Fields,” Proc. IEEE Visualization, pp. 313320, 2004.
[47] X. Zheng, B. Parlett, and A. Pang, “Topological Structures of 3D Tensor Fields,” Proc. IEEE Visualization Conf., pp. 551558, 2005.