This Article 
 Bibliographic References 
 Add to: 
Mapping High-Fidelity Volume Rendering for Medical Imaging to CPU, GPU and Many-Core Architectures
November/December 2009 (vol. 15 no. 6)
pp. 1563-1570
Mikhail Smelyanskiy, Intel Corporation
David Holmes, Mayo Clinic
Jatin Chhugani, Intel Corporation
Alan Larson, Mayo Clinic
Douglas M. Carmean, Intel Corporation
Dennis Hanson, Mayo Clinic
Pradeep Dubey, Intel Corporation
Kurt Augustine, Mayo Clinic
Daehyun Kim, Intel Corporation
Alan Kyker, Intel Corporation
Victor W. Lee, Intel Corporation
Anthony D. Nguyen, Intel Corporation
Larry Seiler, Intel Corporation
Richard Robb, Mayo Clinic
Medical volumetric imaging requires high fidelity, high performance rendering algorithms. We motivate and analyze new volumetric rendering algorithms that are suited to modern parallel processing architectures. First, we describe the three major categories of volume rendering algorithms and confirm through an imaging scientist-guided evaluation that ray-casting is the most acceptable. We describe a thread- and data-parallel implementation of ray-casting that makes it amenable to key architectural trends of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel® architecture code-named Larrabee. We achieve more than an order of magnitude performance improvement on a number of large 3D medical datasets. We further describe a data compression scheme that significantly reduces data-transfer overhead. This allows our approach to scale well to large numbers of Larrabee cores.

[1] K.E. Augustine and et al. Optimization of spine surgery planning with 3D image templating tools. Proceedings of SPIE, 6918, 2008.
[2] H. Bjorkman, H. Eklof, J. Wadstrom, L.G. Andersson, R. Nyman, and A. Magnusson, Split renal function in patients with suspected renal artery stenosis: a comparison between gamma camera renography and two methods of measurement with computed tomography. Acta Radio-logica, 47 (1): 107–13, 2006.
[3] S. Boulos, I. Wald, and C. Benthin, Adaptive ray packet reordering. Symposium on Interactive Ray Tracing, pages 131–138, 2007.
[4] J. Danskin and P. Hanrahan, Fast algorithms for volume ray tracing. In Proceedings of Workshop on Volume Visualization, pages 91–98, 1992.
[5] K.M. Das, A.A. El-Menyar, A.M. Salam, R. Singh, W.A. Dabdoob, H.A. Albinali, and J. Al, Suwaidi. Contrast-enhanced 64-section coronary multidetector CT angiography versus conventional coronary angiography for stent assessment. Radiology, 245 (2): 424–32, 2007.
[6] R.A. Drebin, L. Carpenter, and P. Hanrahan, Volume rendering. In SIGGRAPH, volume 22, pages 65–74. 1988.
[7] R.A. Fisher, On the interpretation of x2 from contingency tables, and the calculation of p. Journal of the Royal Stat. Society, 85 (1): 87–94, 1922.
[8] J.-L. Gailly and M. Adler, ZLIB documentation and sources.
[9] M. Hadwiger, P. Ljung, C.R. Salama, and T. Ropinski, Advanced illumination techniques for gpu volume raycasting. In SIGGRAPH Asia '08: ACM SIGGRAPH ASIA 2008 courses, pages 1–166. ACM, 2008.
[10] Y. Heng and L. Gu, Gpu-based volume rendering for medical image visualization. pages 5145–5148, 2005.
[11] K. Hohne and R. Bernstein, Shading 3D-Images from CT using gray-level gradients. IEEE Trans Med Imag, MI- 5 (1): 45–47, 1986.
[12] Intel. SSE4 Programming Reference. 2007.
[13] A. Knoll, Y. Hijazi, C. Hansen, I. Wald, and H. Hagen, Interactive ray tracing of arbitrary implicits with SIMD interval arithmetic. In Proc. of the 2nd IEEE/EG Symp. on Interactive Ray Tracing, pages 11–17, 2007.
[14] A. Knoll, I. Wald, S. Parker, and C. Hansen, Interactive isosurface ray tracing of large octree volumes. In IEEE Symp. on Interactive Ray Tracing, pages 115–124, 2006.
[15] J. Kruger and R. Westermann, Acceleration techniques for GPU-based volume rendering. In IEEE Visualization 2003, pages 287–292, 2003.
[16] P. Lacroute and M. Levoy, Fast volume rendering using a shear-warp factorization of the viewing transformation. In SIGGRAPH '94, pages 451–458, New York, NY, USA, 1994. ACM.
[17] M. Levoy, Display of surfaces from volume data. IEEE Computer Graphics & Applications, 8 (3): 29–37, 1988.
[18] M. Levoy, Efficient ray tracing of volume data. ACM Transactions on Graphics, 9 (3): 245–261, 1990.
[19] M. Magallón, M. Hopf, and T. Ertl, Parallel volume rendering using PC graphics hardware. In Pacific Conference on Computer Graphics and Applications, pages 384–389, 2001.
[20] J. Mensmann, T. Ropinski, and K. Hinrichs, Slab-Based Raycasting: Efficient Volume Rendering with CUDA, High Performance Graphics. Poster in High Performance Graphics 2009, August 2009.
[21] K. Mueller and R. Crawfis, Eliminating popping artifacts in sheet buffer-based splatting. In IEEE Vis, pages 239–245, 1998.
[22] NVIDIA. NVIDIA CUDA Compute Unified Device Architecture, Programming Guide, Version 2.0. 2007.
[23] NVIDIA. NVIDIA Tesla C870 GPU Computing Processor Board, 2008.
[24] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler, The VolumePro realtime raycasting system. In SIGGRAPH, pages 251–260, '99.
[25] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser, Smart hardware-accelerated volume rendering. In EG/IEEE TCVG Symposium on Visualization, pages 231–238, 2003.
[26] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, and et al. Larrabee: A many-core x86 architecture for visual computing. ACM Trans. Graph., 27 (3): 1–15, 2008.
[27] J. Sweeney and K. Mueller, Shear-warp deluxe: the shear-warp algorithm revisited. In Symposium on Data Visualisation 2002, pages 95–104, 2002.
[28] I. Wald and et al. Interactive rendering with coherent ray tracing. In Computer Graphics Forum, pages 153–164, 2001.
[29] I. Wald, P. Slusallek, C. Benthin, and M. Wagner, Interactive rendering with coherent raytracing. In Computer Graphics Forum/Proceedings of EUROGRAPHICS 2001, pages 153–164, 2001.
[30] L. Westover, Footprint evaluation for volume rendering. In F. Baskett editor, SIGGRAPH 90, volume 24, pages 367–376, 1990.
[31] Z. Xiong, X. Wu, S. Cheng, and J. Hua, Lossy-to-lossless compression of medical volumetric data using three-dimensional integer wavelet transforms. Medical Imaging, IEEE Transactions on, 22 (3): 459–470, 2003.

Index Terms:
Volume Compositing, Parallel Processing, Many-core Computing, Medical Imaging, Graphics Architecture, GPGPU
Mikhail Smelyanskiy, David Holmes, Jatin Chhugani, Alan Larson, Douglas M. Carmean, Dennis Hanson, Pradeep Dubey, Kurt Augustine, Daehyun Kim, Alan Kyker, Victor W. Lee, Anthony D. Nguyen, Larry Seiler, Richard Robb, "Mapping High-Fidelity Volume Rendering for Medical Imaging to CPU, GPU and Many-Core Architectures," IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 1563-1570, Nov.-Dec. 2009, doi:10.1109/TVCG.2009.164
Usage of this product signifies your acceptance of the Terms of Use.