The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.06 - November/December (2009 vol.15)
pp: 1531-1538
Julian Heinrich , Universität Stuttgart
Daniel Weiskopf , Universität Stuttgart
ABSTRACT
Typical scientific data is represented on a grid with appropriate interpolation or approximation schemes,defined on a continuous domain. The visualization of such data in parallel coordinates may reveal patterns latently contained in the data and thus can improve the understanding of multidimensional relations. In this paper, we adopt the concept of continuous scatterplots for the visualization of spatially continuous input data to derive a density model for parallel coordinates. Based on the point-line duality between scatterplots and parallel coordinates, we propose a mathematical model that maps density from a continuous scatterplot to parallel coordinates and present different algorithms for both numerical and analytical computation of the resulting density field. In addition, we show how the 2-D model can be used to successively construct continuous parallel coordinates with an arbitrary number of dimensions. Since continuous parallel coordinates interpolate data values within grid cells, a scalable and dense visualization is achieved, which will be demonstrated for typical multi-variate scientific data.
INDEX TERMS
Parallel coordinates, integrating spatial and non-spatial datavisualization, multi-variate visualization, interpolation
CITATION
Julian Heinrich, Daniel Weiskopf, "Continuous Parallel Coordinates", IEEE Transactions on Visualization & Computer Graphics, vol.15, no. 6, pp. 1531-1538, November/December 2009, doi:10.1109/TVCG.2009.131
REFERENCES
[1] A. O. Artero, M. C. F. de Oliveira, and H. Levkowitz, Uncovering clusters in crowded parallel coordinates visualizations. In IEEE Symposium on Information Visualization, pages 81–88, 2004.
[2] S. Bachthaler and D. Weiskopf, Continuous scatterplots. IEEE Transactions on Visualization and Computer Graphics, 14 (6): 1428–1435, 2008.
[3] S. Bachthaler and D. Weiskopf, Efficient and adaptive rendering of 2-D continuous scatterplots. Computer Graphics Forum, 28 (3): 743–750, 2009.
[4] R. A. Becker and W. S. Cleveland, Brushing scatterplots. Technometrics, 29 (2): 127–142, 1987.
[5] F. Bendix, R. Kosara, and H. Hauser, Parallel sets: Visual analysis of categorical data. In IEEE Symposium on Information Visualization, pages 133–140, 2005.
[6] M. R. Berthold and L. O. Hall, Visualizing fuzzy points in parallel coordinates. IEEE Transactions on Fuzzy Systems, 11: 369–374, 2003.
[7] J. Blaas, C. Botha, and F. Post, Extensions of parallel coordinates for interactive exploration of large multi-timepoint data sets. IEEE Transactions on Visualization and Computer Graphics, 14 (6): 1436–1451, 2008.
[8] H. Carr, B. Duffy, and B. Denby, On histograms and isosurface statistics. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 1259–1266, 2006.
[9] H. Doleisch, M. Gasser, and H. Hauser, Interactive feature specification for focus+context visualization of complex simulation data. In IEEE Symposium on Visualization, pages 239–248, 2003.
[10] H. Doleisch and H. Hauser, Smooth brushing for focus+context visualization of simulation data in 3D. Journal of WSCG, pages 147–155 2002.
[11] G. Ellis and A. Dix, Enabling automatic clutter reduction in parallel coordinate plots. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 717–724, 2006.
[12] Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner, Hierarchical parallel coordinates for exploration of large datasets. In IEEE Visualization, pages 43–50, 1999.
[13] H. Hauser, F. Ledermann, and H. Doleisch, Angular brushing for extended parallel coordinates. In IEEE Symposium on Information Visualization, pages 127–130, 2002.
[14] A. Inselberg, The plane with parallel coordinates. The Visual Computer, 1 (4): 69–91, 1985.
[15] A. Inselberg and B. Dimsdale, Parallel coordinates: A tool for visualizing multi-dimensional geometry. In IEEE Visualization, pages 361–378, 1990.
[16] A. Inselberg and B. Dimsdale, Multidimensional lines II: Proximity and applications. SIAM Journal on Applied Mathematics, 54 (2): 578–596, 1994.
[17] J. lohansson, P. Ljung, M. lern, and M. Cooper, Revealing structure within clustered parallel coordinates displays. In IEEE Symposium on Information Visualization, pages 125–132, 2005.
[18] K. T. McDonnell and K. Mueller, Illustrative parallel coordinates. Computer Graphics Forum, 27 (3): 1031–1038, 2008.
[19] J.J. Miller and E. J. Wegman, Construction of line densities for parallel coordinate plots. In Computing and Graphics in Statistics, pages 107— 123. Springer, New York, 1991.
[20] P. Muigg, J. Kehrer, S. Oeltze, H. Piringer, H. Doleisch, B. Preim, and H. Hauser, A four-level focus+context approach to interactive visual analysis of temporal features in large scientific data. Computer Graphics Forum, 27 (3): 775–782, 2008.
[21] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. SIAM (Society for Industrial and Applied Mathematics), Philadelphia, 1992.
[22] M. Novotny and H. Hauser, Outlier-preserving focus+context visualization in parallel coordinates. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 893–900, 2006.
[23] J. F. Rodrigues, Jr., A. J. M. Traina, and C. Traina, Jr., Frequency plot and relevance plot to enhance visual data exploration. In Computer Graphics and Image Processing, pages 117–124, 2003.
[24] C. E. Scheidegger, J. Schreiner, B. Duffy, H. Carr, and C. T. Silva, Revisiting histograms and isosurface statistics. IEEE Transactions on Visualization and Computer Graphics, 14 (6): 1659–1666, 2008.
[25] P. Shirley and A. Tuchman, A polygonal approximation to direct scalar volume rendering. Computer Graphics, 24 (5): 63–70, 1990.
[26] E. Wegman, Hyperdimensional data analysis using parallel coordinates. Journal of the American Statistical Association, 411 (85): 664, 1990.
[27] E. Wegman and Q. Luo, High dimensional clustering using parallel coordinates and the grand tour. Computing Science and Statistics, 28: 361–368, 1997.
[28] H. Zhou, X. Yuan, H. Qu, W. Cui, and B. Chen, Visual clustering in parallel coordinates. Computer Graphics Forum, 27 (3): 1047–1054, 2008.
23 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool