The Community for Technology Leaders
RSS Icon
Issue No.06 - November/December (2009 vol.15)
pp: 1515-1522
Sven Hermann , University Hospital of Münster,
Rainer Reich , Visualization and Computer Graphics Research Group (VisCG), University of Münster
Michael Schäfers , European Institute of Molecular Imaging (EIMI)
Klaus Hinrichs , Visualization and Computer Graphics Research Group (VisCG), University of Münster
In this paper, we present a visualization system for the visual analysis of PET/CT scans of aor tic arches of mice. The system has been designed in close collaboration between researchers from the areas of visualization and molecular imaging with the objective to get deeper insights into the structural and molecular processes which take place during plaque development. Understanding the development of plaques might lead to a better and earlier diagnosis of cardiovascular diseases, which are still the main cause of death in the western world. After motivating our approach, we will briefly describe the multimodal data acquisition process before explaining the visualization techniques used. The main goal is to develop a system which suppor ts visual comparison of the data of different species. Therefore, we have chosen a linked multi-view approach, which amongst others integrates a specialized straightened multipath cur ved planar reformation and a multimodal vessel flattening technique. We have applied the visualization concepts to multiple data sets, and we will present the results of this investigation.
Vessel visualization, plaque growth, multipath CPR, vessel flattening
Sven Hermann, Rainer Reich, Michael Schäfers, Klaus Hinrichs, "Multimodal Vessel Visualization of Mouse Aorta PET/CT Scans", IEEE Transactions on Visualization & Computer Graphics, vol.15, no. 6, pp. 1515-1522, November/December 2009, doi:10.1109/TVCG.2009.169
[1] J. Beyer, M. Hadwiger, S. Wolfsberger, and K. Bühler, High-quality multimodal volume rendering for preoperative planning of neurosurgical interventions. In IEEE Visualization, pages 1696–1703, 2007.
[2] R. Brecheisen, B. Platel, A. Vilanova, and B. ter Haar Romeny, Flexible GPU-based multi-volume ray-casting. In Vision, Modelling and Visualization, pages 1–6, 2008.
[3] T. Brunet, K. E. Nowak, and M. Gleicher, Integrating dynamic deformations into interactive volume visualization. In IEEE/EG EuroVis, pages 219–226, 2006.
[4] K. Bühler, P. Felkel, and A. L. Cruz, Geometric methods for vessel visualization and quantification- a survey. In Geometric Modelling for Scientific Visualization, pages 399–419. Springer, 2004.
[5] N. D. Cornea and P. Min, Curve-skeleton properties, applications, and algorithms. IEEE Trans. Visualization and Computer Graphics, 13 (3): 530–548, 2007.
[6] N. D. Cornea, D. Silver, X. Yuan, and R. Balasubramanian, Computing hierarchical curve-skeletons of 3D objects. The Visual Computer, 21 (11): 945–955, 2005.
[7] A. Gerhards, P. Raab, S. Herber, K. F. Kreitner, T. Boskamp, and P. Mildenberger, Software-assisted CT-postprocessing of the carotid arteries. Rofo, 176 (6): 870–874, 2004.
[8] C. Glass and J. Witztum, Atherosclerosis. The road ahead. Cell, 104: 503– 516 2001.
[9] H. K. Hahn, B. Preim, D. Selle, and H. O. Peitgen, Visualization and interaction techniques for the exploration of vascular structures. In IEEE Visualization, pages 395–402, 2001.
[10] S. He, R. Dai, B. Lu, C. Cao, H. Bai, and B. Jing, Medial axis reformation: a new visualization method for CT angiography. Acad Radiol, 8 (8): 726–733, 2001.
[11] W. Hong, X. Gu, F. Qiu, M. Jin, and A. Kaufman, Conformal virtual colon flattening. In ACM Solid and Physical Modeling, pages 85–93, 2006.
[12] R. Huang and K.-L. Ma, Rgvis: Region growing based techniques for volume visualization. In Pacific Conference on Computer Graphics and Applications, pages 355–363, 2003.
[13] A. Kanitsar, D. Fleischmann, R. Wegenkittl, P. Felkel, and M. E. Gröller, CPR: curved planar reformation. In IEEE Visualization, pages 37–44, 2002.
[14] A. Kanitsar, D. Fleischmann, R. Wegenkittl, and M. E. Gröller, Diagnostic relevant visualization of vascular structures. In Scientific Visualization: The Visual Extraction of Knowledge from Data, pages 207–228. Springer, 2006.
[15] A. Kanitsar, R. Wegenkittl, D. Fleischmann, and M. E. Gröller, Advanced curved planar reformation: Flattening of vascular structures. In IEEE Visualization, pages 43–50, 2003.
[16] P. Kohlmann, S. Bruckner, A. Kanitsar, and E. Gröller, Livesync: Deformed viewing spheres for knowledge-based navigation. In IEEE Visualization, pages 1544–1551, 2007.
[17] J. Krüger and R. Westermann, Acceleration techniques for GPU-based volume rendering. In IEEE Visualization, pages 287–292, 2003.
[18] D. H. Laidlaw, Geometric model extraction from magnetic resonance volume data. Technical report, 1995.
[19] H.-J. Lee, S. Lim, and B.-S. Shin, Unfolding of virtual endoscopy using ray-template. In Bio. and Medical Data Analysis, pages 69–77, 2005.
[20] N. Lee and M. Rasch, Tangential curved planar reformation for topological and orientation invariant visualization of vascular trees. In IEEE Engineering in Medicine and Biology Society, pages 1073–1076, 2006.
[21] S. Oeltze and B. Preim, Visualization of vasculature with convolution surfaces: method, validation and evaluation. IEEE Trans. Med. Imaging, 24 (4): 540–548, 2005.
[22] C. Rieder, F. Ritter, M. Raspe, and H.-O. Peitgen, Interactive visualization of multimodal volume data for neurosurgical tumor treatment. In IEEE/EG EuroVis, pages 1055–1062, 2008.
[23] R. Ross, Atherosclerosis–an inflammatory disease. N Engl J Med., 340: 115–126, 1999.
[24] M. Schäfers, B. Riemann, K. Kopka, H. Breyholz, S. Wagner, K. Schäfers, M. Law, O. Schober, and B. Levkau, Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation, 190 (21): 2554–2559, 2004.
[25] C. Schumann, S. Oeltze, R. Bade, B. Preim, and H.-O. Peitgen, Model-free surface visualization of vascular trees. In IEEE/EG EuroVis, pages 283–290, 2007.
[26] R. R. Springmeyer, M. M. Blattner, and N. L. Max, A characterization of the scientific data analysis process. In IEEE Visualization, pages 235– 242, 1992.
[27] M. Straka, M. Cervenanský, A. L. Cruz, A. Köchl, M. Srámek, M. E. Gröller, and D. Fleischmann, The vesselglyph: Focus & context visualization in ct-angiography. In IEEE Visualization, pages 392–385, 2004.
[28] M. Tory, Mental registration of 2d and 3d visualizations (an empirical study). In IEEE Visualization, pages 371–378, 2003.
[29] D. Weiskopf and T. Ertl, Real-time depth-cueing beyond fogging. J. Graph. Tools, 7 (4): 83–90, 2002.
[30] D. Williams, S. Grimm, E. Coto, A. Roudsari, and H. Hatzakis, Volumetric curved planar reformation for virtual endoscopy. IEEE Trans. Visualization and Computer Graphics, 14 (1): 109–119, 2008.
[31] O. Wink, W. Niessen, and M. A. Viergever, Fast delineation and visualization of vessels in 3D angiographic images. IEEE Trans. Med. Imaging, 19 (4): 337–346, April 2000.
[32] J. H. Won, G. D. Rubin, and S. Napel, Flattening the abdominal aortic tree for effective visualization. IEEE Engineering in Medicine and Biology Society, 1: 3345–3348, 2006.
[33] Y. Yang, L. Zhu, S. Haker, A. Tannenbaum, and D. Giddens, Harmonic skeleton guided evaluation of stenoses in human coronary arteries. In Med. Image Comput. Comput. Assist. Interv., pages 490–497, 2005.
[34] L. Zhu, S. Haker, and A. Tannenbaum, Conformal flattening maps for the visualization of vessels. In SPIE Medical Imaging, volume 4681, pages 742–748, 2002.
[35] L. Zhu, S. Haker, and A. Tannenbaum, Flattening maps for the visualization of multibranched vessels. IEEE Trans. Med. Imaging, 24 (2): 191– 198, 2005.
[36] L. Zhu, S. Haker, A. Tannenbaum, S. Bouix, and K. Siddiqi, Angle-preserving mappings for the visualization of multi-branched vessels. In Image Processing 2002, volume 2, pages 945–948, 2002.
40 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool